Spaces:
Runtime error
Runtime error
# Copyright (c) 2019 Shigeki Karita | |
# 2020 Mobvoi Inc (Binbin Zhang) | |
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn) | |
# 2024 Alibaba Inc (Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Multi-Head Attention layer definition.""" | |
import math | |
from typing import Tuple | |
import torch | |
from torch import nn | |
class MultiHeadedAttention(nn.Module): | |
"""Multi-Head Attention layer. | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
key_bias: bool = True): | |
"""Construct an MultiHeadedAttention object.""" | |
super().__init__() | |
assert n_feat % n_head == 0 | |
# We assume d_v always equals d_k | |
self.d_k = n_feat // n_head | |
self.h = n_head | |
self.linear_q = nn.Linear(n_feat, n_feat) | |
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) | |
self.linear_v = nn.Linear(n_feat, n_feat) | |
self.linear_out = nn.Linear(n_feat, n_feat) | |
self.dropout = nn.Dropout(p=dropout_rate) | |
def forward_qkv( | |
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Transform query, key and value. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
Returns: | |
torch.Tensor: Transformed query tensor, size | |
(#batch, n_head, time1, d_k). | |
torch.Tensor: Transformed key tensor, size | |
(#batch, n_head, time2, d_k). | |
torch.Tensor: Transformed value tensor, size | |
(#batch, n_head, time2, d_k). | |
""" | |
n_batch = query.size(0) | |
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) | |
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) | |
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) | |
q = q.transpose(1, 2) # (batch, head, time1, d_k) | |
k = k.transpose(1, 2) # (batch, head, time2, d_k) | |
v = v.transpose(1, 2) # (batch, head, time2, d_k) | |
return q, k, v | |
def forward_attention( | |
self, | |
value: torch.Tensor, | |
scores: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) | |
) -> torch.Tensor: | |
"""Compute attention context vector. | |
Args: | |
value (torch.Tensor): Transformed value, size | |
(#batch, n_head, time2, d_k). | |
scores (torch.Tensor): Attention score, size | |
(#batch, n_head, time1, time2). | |
mask (torch.Tensor): Mask, size (#batch, 1, time2) or | |
(#batch, time1, time2), (0, 0, 0) means fake mask. | |
Returns: | |
torch.Tensor: Transformed value (#batch, time1, d_model) | |
weighted by the attention score (#batch, time1, time2). | |
""" | |
n_batch = value.size(0) | |
# NOTE(xcsong): When will `if mask.size(2) > 0` be True? | |
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the | |
# 1st chunk to ease the onnx export.] | |
# 2. pytorch training | |
if mask.size(2) > 0: # time2 > 0 | |
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) | |
# For last chunk, time2 might be larger than scores.size(-1) | |
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) | |
scores = scores.masked_fill(mask, -float('inf')) | |
attn = torch.softmax(scores, dim=-1).masked_fill( | |
mask, 0.0) # (batch, head, time1, time2) | |
# NOTE(xcsong): When will `if mask.size(2) > 0` be False? | |
# 1. onnx(16/-1, -1/-1, 16/0) | |
# 2. jit (16/-1, -1/-1, 16/0, 16/4) | |
else: | |
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) | |
p_attn = self.dropout(attn) | |
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) | |
x = (x.transpose(1, 2).contiguous().view(n_batch, -1, | |
self.h * self.d_k) | |
) # (batch, time1, d_model) | |
return self.linear_out(x) # (batch, time1, d_model) | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute scaled dot product attention. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2). | |
1.When applying cross attention between decoder and encoder, | |
the batch padding mask for input is in (#batch, 1, T) shape. | |
2.When applying self attention of encoder, | |
the mask is in (#batch, T, T) shape. | |
3.When applying self attention of decoder, | |
the mask is in (#batch, L, L) shape. | |
4.If the different position in decoder see different block | |
of the encoder, such as Mocha, the passed in mask could be | |
in (#batch, L, T) shape. But there is no such case in current | |
CosyVoice. | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q, k, v = self.forward_qkv(query, key, value) | |
# NOTE(xcsong): | |
# when export onnx model, for 1st chunk, we feed | |
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
# In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
# and we will always do splitting and | |
# concatnation(this will simplify onnx export). Note that | |
# it's OK to concat & split zero-shaped tensors(see code below). | |
# when export jit model, for 1st chunk, we always feed | |
# cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
# >>> a = torch.ones((1, 2, 0, 4)) | |
# >>> b = torch.ones((1, 2, 3, 4)) | |
# >>> c = torch.cat((a, b), dim=2) | |
# >>> torch.equal(b, c) # True | |
# >>> d = torch.split(a, 2, dim=-1) | |
# >>> torch.equal(d[0], d[1]) # True | |
if cache.size(0) > 0: | |
key_cache, value_cache = torch.split(cache, | |
cache.size(-1) // 2, | |
dim=-1) | |
k = torch.cat([key_cache, k], dim=2) | |
v = torch.cat([value_cache, v], dim=2) | |
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
# non-trivial to calculate `next_cache_start` here. | |
new_cache = torch.cat((k, v), dim=-1) | |
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
return self.forward_attention(v, scores, mask), new_cache | |
class RelPositionMultiHeadedAttention(MultiHeadedAttention): | |
"""Multi-Head Attention layer with relative position encoding. | |
Paper: https://arxiv.org/abs/1901.02860 | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
key_bias: bool = True): | |
"""Construct an RelPositionMultiHeadedAttention object.""" | |
super().__init__(n_head, n_feat, dropout_rate, key_bias) | |
# linear transformation for positional encoding | |
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) | |
# these two learnable bias are used in matrix c and matrix d | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
def rel_shift(self, x): | |
"""Compute relative positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). | |
time1 means the length of query vector. | |
Returns: | |
torch.Tensor: Output tensor. | |
""" | |
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) | |
x_padded = torch.cat([zero_pad, x], dim=-1) | |
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) | |
x = x_padded[:, :, 1:].view_as(x)[ | |
:, :, :, : x.size(-1) // 2 + 1 | |
] # only keep the positions from 0 to time2 | |
return x | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2), (0, 0, 0) means fake mask. | |
pos_emb (torch.Tensor): Positional embedding tensor | |
(#batch, time2, size). | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q, k, v = self.forward_qkv(query, key, value) | |
q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
# NOTE(xcsong): | |
# when export onnx model, for 1st chunk, we feed | |
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
# In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
# and we will always do splitting and | |
# concatnation(this will simplify onnx export). Note that | |
# it's OK to concat & split zero-shaped tensors(see code below). | |
# when export jit model, for 1st chunk, we always feed | |
# cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
# >>> a = torch.ones((1, 2, 0, 4)) | |
# >>> b = torch.ones((1, 2, 3, 4)) | |
# >>> c = torch.cat((a, b), dim=2) | |
# >>> torch.equal(b, c) # True | |
# >>> d = torch.split(a, 2, dim=-1) | |
# >>> torch.equal(d[0], d[1]) # True | |
if cache.size(0) > 0: | |
key_cache, value_cache = torch.split(cache, | |
cache.size(-1) // 2, | |
dim=-1) | |
k = torch.cat([key_cache, k], dim=2) | |
v = torch.cat([value_cache, v], dim=2) | |
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
# non-trivial to calculate `next_cache_start` here. | |
new_cache = torch.cat((k, v), dim=-1) | |
n_batch_pos = pos_emb.size(0) | |
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
# (batch, head, time1, d_k) | |
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) | |
# (batch, head, time1, d_k) | |
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) | |
# compute attention score | |
# first compute matrix a and matrix c | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
# (batch, head, time1, time2) | |
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) | |
# compute matrix b and matrix d | |
# (batch, head, time1, time2) | |
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) | |
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used | |
if matrix_ac.shape != matrix_bd.shape: | |
matrix_bd = self.rel_shift(matrix_bd) | |
scores = (matrix_ac + matrix_bd) / math.sqrt( | |
self.d_k) # (batch, head, time1, time2) | |
return self.forward_attention(v, scores, mask), new_cache | |
# class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention): | |
# """Multi-Head Attention layer with relative position encoding. | |
# Paper: https://arxiv.org/abs/1901.02860 | |
# Args: | |
# n_head (int): The number of heads. | |
# n_feat (int): The number of features. | |
# dropout_rate (float): Dropout rate. | |
# """ | |
# def __init__(self, | |
# n_head: int, | |
# n_feat: int, | |
# dropout_rate: float, | |
# key_bias: bool = True, | |
# block_size=25): | |
# """Construct an RelPositionMultiHeadedAttention object.""" | |
# super().__init__(n_head, n_feat, dropout_rate, key_bias) | |
# # linear transformation for positional encoding | |
# self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) | |
# # these two learnable bias are used in matrix c and matrix d | |
# # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
# self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
# self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
# torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
# torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
# self.block_size=block_size | |
# def rel_shift(self, x): | |
# """Compute relative positional encoding. | |
# Args: | |
# x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). | |
# time1 means the length of query vector. | |
# Returns: | |
# torch.Tensor: Output tensor. | |
# """ | |
# zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) | |
# x_padded = torch.cat([zero_pad, x], dim=-1) | |
# x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) | |
# x = x_padded[:, :, 1:].view_as(x)[ | |
# :, :, :, : x.size(-1) // 2 + 1 | |
# ] # only keep the positions from 0 to time2 | |
# return x | |
# def forward( | |
# self, | |
# query: torch.Tensor, | |
# key: torch.Tensor, | |
# value: torch.Tensor, | |
# mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
# pos_emb: torch.Tensor = torch.empty(0), | |
# cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
# ) -> Tuple[torch.Tensor, torch.Tensor]: | |
# """Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
# Args: | |
# query (torch.Tensor): Query tensor (#batch, time1, size). | |
# key (torch.Tensor): Key tensor (#batch, time2, size). | |
# value (torch.Tensor): Value tensor (#batch, time2, size). | |
# mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
# (#batch, time1, time2), (0, 0, 0) means fake mask. | |
# pos_emb (torch.Tensor): Positional embedding tensor | |
# (#batch, time2, size). | |
# cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
# where `cache_t == chunk_size * num_decoding_left_chunks` | |
# and `head * d_k == size` | |
# Returns: | |
# torch.Tensor: Output tensor (#batch, time1, d_model). | |
# torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
# where `cache_t == chunk_size * num_decoding_left_chunks` | |
# and `head * d_k == size` | |
# """ | |
# q, k, v = self.forward_qkv(query, key, value) | |
# q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
# # NOTE(xcsong): | |
# # when export onnx model, for 1st chunk, we feed | |
# # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
# # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
# # In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
# # and we will always do splitting and | |
# # concatnation(this will simplify onnx export). Note that | |
# # it's OK to concat & split zero-shaped tensors(see code below). | |
# # when export jit model, for 1st chunk, we always feed | |
# # cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
# # >>> a = torch.ones((1, 2, 0, 4)) | |
# # >>> b = torch.ones((1, 2, 3, 4)) | |
# # >>> c = torch.cat((a, b), dim=2) | |
# # >>> torch.equal(b, c) # True | |
# # >>> d = torch.split(a, 2, dim=-1) | |
# # >>> torch.equal(d[0], d[1]) # True | |
# if cache.size(0) > 0: | |
# key_cache, value_cache = torch.split(cache, | |
# cache.size(-1) // 2, | |
# dim=-1) | |
# k = torch.cat([key_cache, k], dim=2) | |
# v = torch.cat([value_cache, v], dim=2) | |
# # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
# # non-trivial to calculate `next_cache_start` here. | |
# new_cache = torch.cat((k, v), dim=-1) | |
# n_batch_pos = pos_emb.size(0) | |
# p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
# p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
# # (batch, head, time1, d_k) | |
# q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) | |
# # (batch, head, time1, d_k) | |
# q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) | |
# # compute attention score | |
# # first compute matrix a and matrix c | |
# # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
# # (batch, head, time1, time2) | |
# # Compute matrix ac and bd | |
# matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # (batch, head, time1, time2) | |
# matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # (batch, head, time1, time2) | |
# batch_size, num_heads, seq_len, _ = matrix_ac.shape | |
# # Create block causal mask | |
# block_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=self.block_size).to(matrix_ac.device).bool() | |
# # mask = mask.masked_fill(mask == 1, float('-inf')) # mask upper triangular matrix beyond block | |
# # Apply relative shift if necessary | |
# if matrix_ac.shape != matrix_bd.shape: | |
# matrix_bd = self.rel_shift(matrix_bd) | |
# # Combine ac and bd and apply the block causal mask | |
# scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2) | |
# scores = scores.masked_fill(block_mask.unsqueeze(0).unsqueeze(0), float('-inf')) # apply the block mask | |
# # Forward attention | |
# return self.forward_attention(v, scores, mask), new_cache | |
from cosyvoice.utils import block_mask_util | |
class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention): | |
"""Multi-Head Attention layer with relative position encoding. | |
Paper: https://arxiv.org/abs/1901.02860 | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
key_bias: bool = True, block_size=25): | |
"""Construct an RelPositionMultiHeadedAttention object.""" | |
super().__init__(n_head, n_feat, dropout_rate, key_bias) | |
# linear transformation for positional encoding | |
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) | |
# these two learnable bias are used in matrix c and matrix d | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
self.block_size = block_size | |
def rel_shift(self, x: torch.Tensor) -> torch.Tensor: | |
"""Compute relative positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). | |
time1 means the length of query vector. | |
Returns: | |
torch.Tensor: Output tensor. | |
""" | |
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), | |
device=x.device, | |
dtype=x.dtype) | |
x_padded = torch.cat([zero_pad, x], dim=-1) | |
x_padded = x_padded.view(x.size()[0], | |
x.size()[1], | |
x.size(3) + 1, x.size(2)) | |
x = x_padded[:, :, 1:].view_as(x)[ | |
:, :, :, : x.size(-1) // 2 + 1 | |
] # only keep the positions from 0 to time2 | |
return x | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2), (0, 0, 0) means fake mask. | |
pos_emb (torch.Tensor): Positional embedding tensor | |
(#batch, time2, size). | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q, k, v = self.forward_qkv(query, key, value) | |
q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
# 0代表被mask的位置 | |
bs, time_len, _ = query.shape | |
# mask = torch.tril(torch.ones(time_len, time_len).to(mask), diagonal=0).int() | |
# block_size = self.block_size | |
# mask[:, 0:block_size] = 1 | |
block_mask = block_mask_util.create_grid_mask(time_len,self.block_size,fill_triangle=True).to(query).int() | |
block_mask = block_mask[None].repeat(bs, 1, 1) | |
mask=mask*block_mask | |
# NOTE(xcsong): | |
# when export onnx model, for 1st chunk, we feed | |
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
# In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
# and we will always do splitting and | |
# concatnation(this will simplify onnx export). Note that | |
# it's OK to concat & split zero-shaped tensors(see code below). | |
# when export jit model, for 1st chunk, we always feed | |
# cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
# >>> a = torch.ones((1, 2, 0, 4)) | |
# >>> b = torch.ones((1, 2, 3, 4)) | |
# >>> c = torch.cat((a, b), dim=2) | |
# >>> torch.equal(b, c) # True | |
# >>> d = torch.split(a, 2, dim=-1) | |
# >>> torch.equal(d[0], d[1]) # True | |
if cache.size(0) > 0: | |
key_cache, value_cache = torch.split(cache, | |
cache.size(-1) // 2, | |
dim=-1) | |
k = torch.cat([key_cache, k], dim=2) | |
v = torch.cat([value_cache, v], dim=2) | |
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
# non-trivial to calculate `next_cache_start` here. | |
new_cache = torch.cat((k, v), dim=-1) | |
n_batch_pos = pos_emb.size(0) | |
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
# (batch, head, time1, d_k) | |
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) | |
# (batch, head, time1, d_k) | |
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) | |
# compute attention score | |
# first compute matrix a and matrix c | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
# (batch, head, time1, time2) | |
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) | |
# compute matrix b and matrix d | |
# (batch, head, time1, time2) | |
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) | |
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used | |
if matrix_ac.shape != matrix_bd.shape: | |
matrix_bd = self.rel_shift(matrix_bd) | |
scores = (matrix_ac + matrix_bd) / math.sqrt( | |
self.d_k) # (batch, head, time1, time2) | |
return self.forward_attention(v, scores, mask), new_cache | |