xyfcc's picture
Upload folder using huggingface_hub
f631117 verified
# Copyright (c) 2019 Shigeki Karita
# 2020 Mobvoi Inc (Binbin Zhang)
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
# 2024 Alibaba Inc (Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multi-Head Attention layer definition."""
import math
from typing import Tuple
import torch
from torch import nn
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(
self,
value: torch.Tensor,
scores: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
) -> torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
# 1st chunk to ease the onnx export.]
# 2. pytorch training
if mask.size(2) > 0: # time2 > 0
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
# For last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0) # (batch, head, time1, time2)
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
# 1. onnx(16/-1, -1/-1, 16/0)
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
CosyVoice.
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask), new_cache
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate, key_bias)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x):
"""Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[
:, :, :, : x.size(-1) // 2 + 1
] # only keep the positions from 0 to time2
return x
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
if matrix_ac.shape != matrix_bd.shape:
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask), new_cache
# class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention):
# """Multi-Head Attention layer with relative position encoding.
# Paper: https://arxiv.org/abs/1901.02860
# Args:
# n_head (int): The number of heads.
# n_feat (int): The number of features.
# dropout_rate (float): Dropout rate.
# """
# def __init__(self,
# n_head: int,
# n_feat: int,
# dropout_rate: float,
# key_bias: bool = True,
# block_size=25):
# """Construct an RelPositionMultiHeadedAttention object."""
# super().__init__(n_head, n_feat, dropout_rate, key_bias)
# # linear transformation for positional encoding
# self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# # these two learnable bias are used in matrix c and matrix d
# # as described in https://arxiv.org/abs/1901.02860 Section 3.3
# self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
# self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
# torch.nn.init.xavier_uniform_(self.pos_bias_u)
# torch.nn.init.xavier_uniform_(self.pos_bias_v)
# self.block_size=block_size
# def rel_shift(self, x):
# """Compute relative positional encoding.
# Args:
# x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
# time1 means the length of query vector.
# Returns:
# torch.Tensor: Output tensor.
# """
# zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
# x_padded = torch.cat([zero_pad, x], dim=-1)
# x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
# x = x_padded[:, :, 1:].view_as(x)[
# :, :, :, : x.size(-1) // 2 + 1
# ] # only keep the positions from 0 to time2
# return x
# def forward(
# self,
# query: torch.Tensor,
# key: torch.Tensor,
# value: torch.Tensor,
# mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
# pos_emb: torch.Tensor = torch.empty(0),
# cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
# ) -> Tuple[torch.Tensor, torch.Tensor]:
# """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
# Args:
# query (torch.Tensor): Query tensor (#batch, time1, size).
# key (torch.Tensor): Key tensor (#batch, time2, size).
# value (torch.Tensor): Value tensor (#batch, time2, size).
# mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
# (#batch, time1, time2), (0, 0, 0) means fake mask.
# pos_emb (torch.Tensor): Positional embedding tensor
# (#batch, time2, size).
# cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
# where `cache_t == chunk_size * num_decoding_left_chunks`
# and `head * d_k == size`
# Returns:
# torch.Tensor: Output tensor (#batch, time1, d_model).
# torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
# where `cache_t == chunk_size * num_decoding_left_chunks`
# and `head * d_k == size`
# """
# q, k, v = self.forward_qkv(query, key, value)
# q = q.transpose(1, 2) # (batch, time1, head, d_k)
# # NOTE(xcsong):
# # when export onnx model, for 1st chunk, we feed
# # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# # In all modes, `if cache.size(0) > 0` will alwayse be `True`
# # and we will always do splitting and
# # concatnation(this will simplify onnx export). Note that
# # it's OK to concat & split zero-shaped tensors(see code below).
# # when export jit model, for 1st chunk, we always feed
# # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# # >>> a = torch.ones((1, 2, 0, 4))
# # >>> b = torch.ones((1, 2, 3, 4))
# # >>> c = torch.cat((a, b), dim=2)
# # >>> torch.equal(b, c) # True
# # >>> d = torch.split(a, 2, dim=-1)
# # >>> torch.equal(d[0], d[1]) # True
# if cache.size(0) > 0:
# key_cache, value_cache = torch.split(cache,
# cache.size(-1) // 2,
# dim=-1)
# k = torch.cat([key_cache, k], dim=2)
# v = torch.cat([value_cache, v], dim=2)
# # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# # non-trivial to calculate `next_cache_start` here.
# new_cache = torch.cat((k, v), dim=-1)
# n_batch_pos = pos_emb.size(0)
# p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
# p = p.transpose(1, 2) # (batch, head, time1, d_k)
# # (batch, head, time1, d_k)
# q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# # (batch, head, time1, d_k)
# q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# # compute attention score
# # first compute matrix a and matrix c
# # as described in https://arxiv.org/abs/1901.02860 Section 3.3
# # (batch, head, time1, time2)
# # Compute matrix ac and bd
# matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # (batch, head, time1, time2)
# matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # (batch, head, time1, time2)
# batch_size, num_heads, seq_len, _ = matrix_ac.shape
# # Create block causal mask
# block_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=self.block_size).to(matrix_ac.device).bool()
# # mask = mask.masked_fill(mask == 1, float('-inf')) # mask upper triangular matrix beyond block
# # Apply relative shift if necessary
# if matrix_ac.shape != matrix_bd.shape:
# matrix_bd = self.rel_shift(matrix_bd)
# # Combine ac and bd and apply the block causal mask
# scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
# scores = scores.masked_fill(block_mask.unsqueeze(0).unsqueeze(0), float('-inf')) # apply the block mask
# # Forward attention
# return self.forward_attention(v, scores, mask), new_cache
from cosyvoice.utils import block_mask_util
class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True, block_size=25):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate, key_bias)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
self.block_size = block_size
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
"""Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device,
dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0],
x.size()[1],
x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[
:, :, :, : x.size(-1) // 2 + 1
] # only keep the positions from 0 to time2
return x
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
# 0代表被mask的位置
bs, time_len, _ = query.shape
# mask = torch.tril(torch.ones(time_len, time_len).to(mask), diagonal=0).int()
# block_size = self.block_size
# mask[:, 0:block_size] = 1
block_mask = block_mask_util.create_grid_mask(time_len,self.block_size,fill_triangle=True).to(query).int()
block_mask = block_mask[None].repeat(bs, 1, 1)
mask=mask*block_mask
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
if matrix_ac.shape != matrix_bd.shape:
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask), new_cache