# Copyright (c) 2019 Shigeki Karita # 2020 Mobvoi Inc (Binbin Zhang) # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn) # 2024 Alibaba Inc (Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-Head Attention layer definition.""" import math from typing import Tuple import torch from torch import nn class MultiHeadedAttention(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head: int, n_feat: int, dropout_rate: float, key_bias: bool = True): """Construct an MultiHeadedAttention object.""" super().__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor, size (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor, size (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor, size (#batch, n_head, time2, d_k). """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) # (batch, head, time1, d_k) k = k.transpose(1, 2) # (batch, head, time2, d_k) v = v.transpose(1, 2) # (batch, head, time2, d_k) return q, k, v def forward_attention( self, value: torch.Tensor, scores: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) ) -> torch.Tensor: """Compute attention context vector. Args: value (torch.Tensor): Transformed value, size (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score, size (#batch, n_head, time1, time2). mask (torch.Tensor): Mask, size (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) # NOTE(xcsong): When will `if mask.size(2) > 0` be True? # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the # 1st chunk to ease the onnx export.] # 2. pytorch training if mask.size(2) > 0: # time2 > 0 mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) # For last chunk, time2 might be larger than scores.size(-1) mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) scores = scores.masked_fill(mask, -float('inf')) attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0) # (batch, head, time1, time2) # NOTE(xcsong): When will `if mask.size(2) > 0` be False? # 1. onnx(16/-1, -1/-1, 16/0) # 2. jit (16/-1, -1/-1, 16/0, 16/4) else: attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = (x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). 1.When applying cross attention between decoder and encoder, the batch padding mask for input is in (#batch, 1, T) shape. 2.When applying self attention of encoder, the mask is in (#batch, T, T) shape. 3.When applying self attention of decoder, the mask is in (#batch, L, L) shape. 4.If the different position in decoder see different block of the encoder, such as Mocha, the passed in mask could be in (#batch, L, T) shape. But there is no such case in current CosyVoice. cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) # NOTE(xcsong): # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if cache.size(0) > 0: key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = torch.cat((k, v), dim=-1) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) return self.forward_attention(v, scores, mask), new_cache class RelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head: int, n_feat: int, dropout_rate: float, key_bias: bool = True): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_head, n_feat, dropout_rate, key_bias) # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) def rel_shift(self, x): """Compute relative positional encoding. Args: x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). time1 means the length of query vector. Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x)[ :, :, :, : x.size(-1) // 2 + 1 ] # only keep the positions from 0 to time2 return x def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. pos_emb (torch.Tensor): Positional embedding tensor (#batch, time2, size). cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) q = q.transpose(1, 2) # (batch, time1, head, d_k) # NOTE(xcsong): # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if cache.size(0) > 0: key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = torch.cat((k, v), dim=-1) n_batch_pos = pos_emb.size(0) p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose(1, 2) # (batch, head, time1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, time2) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used if matrix_ac.shape != matrix_bd.shape: matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask), new_cache # class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention): # """Multi-Head Attention layer with relative position encoding. # Paper: https://arxiv.org/abs/1901.02860 # Args: # n_head (int): The number of heads. # n_feat (int): The number of features. # dropout_rate (float): Dropout rate. # """ # def __init__(self, # n_head: int, # n_feat: int, # dropout_rate: float, # key_bias: bool = True, # block_size=25): # """Construct an RelPositionMultiHeadedAttention object.""" # super().__init__(n_head, n_feat, dropout_rate, key_bias) # # linear transformation for positional encoding # self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # # these two learnable bias are used in matrix c and matrix d # # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) # self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) # torch.nn.init.xavier_uniform_(self.pos_bias_u) # torch.nn.init.xavier_uniform_(self.pos_bias_v) # self.block_size=block_size # def rel_shift(self, x): # """Compute relative positional encoding. # Args: # x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). # time1 means the length of query vector. # Returns: # torch.Tensor: Output tensor. # """ # zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) # x_padded = torch.cat([zero_pad, x], dim=-1) # x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) # x = x_padded[:, :, 1:].view_as(x)[ # :, :, :, : x.size(-1) // 2 + 1 # ] # only keep the positions from 0 to time2 # return x # def forward( # self, # query: torch.Tensor, # key: torch.Tensor, # value: torch.Tensor, # mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), # pos_emb: torch.Tensor = torch.empty(0), # cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) # ) -> Tuple[torch.Tensor, torch.Tensor]: # """Compute 'Scaled Dot Product Attention' with rel. positional encoding. # Args: # query (torch.Tensor): Query tensor (#batch, time1, size). # key (torch.Tensor): Key tensor (#batch, time2, size). # value (torch.Tensor): Value tensor (#batch, time2, size). # mask (torch.Tensor): Mask tensor (#batch, 1, time2) or # (#batch, time1, time2), (0, 0, 0) means fake mask. # pos_emb (torch.Tensor): Positional embedding tensor # (#batch, time2, size). # cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), # where `cache_t == chunk_size * num_decoding_left_chunks` # and `head * d_k == size` # Returns: # torch.Tensor: Output tensor (#batch, time1, d_model). # torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) # where `cache_t == chunk_size * num_decoding_left_chunks` # and `head * d_k == size` # """ # q, k, v = self.forward_qkv(query, key, value) # q = q.transpose(1, 2) # (batch, time1, head, d_k) # # NOTE(xcsong): # # when export onnx model, for 1st chunk, we feed # # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # # In all modes, `if cache.size(0) > 0` will alwayse be `True` # # and we will always do splitting and # # concatnation(this will simplify onnx export). Note that # # it's OK to concat & split zero-shaped tensors(see code below). # # when export jit model, for 1st chunk, we always feed # # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # # >>> a = torch.ones((1, 2, 0, 4)) # # >>> b = torch.ones((1, 2, 3, 4)) # # >>> c = torch.cat((a, b), dim=2) # # >>> torch.equal(b, c) # True # # >>> d = torch.split(a, 2, dim=-1) # # >>> torch.equal(d[0], d[1]) # True # if cache.size(0) > 0: # key_cache, value_cache = torch.split(cache, # cache.size(-1) // 2, # dim=-1) # k = torch.cat([key_cache, k], dim=2) # v = torch.cat([value_cache, v], dim=2) # # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # # non-trivial to calculate `next_cache_start` here. # new_cache = torch.cat((k, v), dim=-1) # n_batch_pos = pos_emb.size(0) # p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) # p = p.transpose(1, 2) # (batch, head, time1, d_k) # # (batch, head, time1, d_k) # q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # # (batch, head, time1, d_k) # q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # # compute attention score # # first compute matrix a and matrix c # # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # # (batch, head, time1, time2) # # Compute matrix ac and bd # matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # (batch, head, time1, time2) # matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # (batch, head, time1, time2) # batch_size, num_heads, seq_len, _ = matrix_ac.shape # # Create block causal mask # block_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=self.block_size).to(matrix_ac.device).bool() # # mask = mask.masked_fill(mask == 1, float('-inf')) # mask upper triangular matrix beyond block # # Apply relative shift if necessary # if matrix_ac.shape != matrix_bd.shape: # matrix_bd = self.rel_shift(matrix_bd) # # Combine ac and bd and apply the block causal mask # scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2) # scores = scores.masked_fill(block_mask.unsqueeze(0).unsqueeze(0), float('-inf')) # apply the block mask # # Forward attention # return self.forward_attention(v, scores, mask), new_cache from cosyvoice.utils import block_mask_util class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head: int, n_feat: int, dropout_rate: float, key_bias: bool = True, block_size=25): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_head, n_feat, dropout_rate, key_bias) # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) self.block_size = block_size def rel_shift(self, x: torch.Tensor) -> torch.Tensor: """Compute relative positional encoding. Args: x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). time1 means the length of query vector. Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x)[ :, :, :, : x.size(-1) // 2 + 1 ] # only keep the positions from 0 to time2 return x def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. pos_emb (torch.Tensor): Positional embedding tensor (#batch, time2, size). cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) q = q.transpose(1, 2) # (batch, time1, head, d_k) # 0代表被mask的位置 bs, time_len, _ = query.shape # mask = torch.tril(torch.ones(time_len, time_len).to(mask), diagonal=0).int() # block_size = self.block_size # mask[:, 0:block_size] = 1 block_mask = block_mask_util.create_grid_mask(time_len,self.block_size,fill_triangle=True).to(query).int() block_mask = block_mask[None].repeat(bs, 1, 1) mask=mask*block_mask # NOTE(xcsong): # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if cache.size(0) > 0: key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = torch.cat((k, v), dim=-1) n_batch_pos = pos_emb.size(0) p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose(1, 2) # (batch, head, time1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, time2) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used if matrix_ac.shape != matrix_bd.shape: matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask), new_cache