|
|
|
import torch |
|
from datasets import load_dataset |
|
from mmengine.dataset import DefaultSampler |
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, |
|
LoggerHook, ParamSchedulerHook) |
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR |
|
from peft import LoraConfig |
|
from torch.optim import AdamW |
|
from transformers import (AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig) |
|
|
|
from xtuner.dataset import process_hf_dataset |
|
from xtuner.dataset.collate_fns import default_collate_fn |
|
from xtuner.dataset.map_fns import template_map_fn_factory |
|
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook, |
|
VarlenAttnArgsToMessageHubHook) |
|
from xtuner.engine.runner import TrainLoop |
|
from xtuner.model import SupervisedFinetune |
|
from xtuner.parallel.sequence import SequenceParallelSampler |
|
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE |
|
from mmengine.visualization import Visualizer, TensorboardVisBackend |
|
|
|
|
|
|
|
|
|
|
|
pretrained_model_name_or_path = '/root/models/internlm2_5-1_8b-chat' |
|
use_varlen_attn = False |
|
|
|
|
|
data_dir="/root/wulewule/data" |
|
data_files = [f'{data_dir}/heishenghua_pretraining.jsonl', f'{data_dir}/incremental_pretraining_en.jsonl', f'{data_dir}/incremental_pretraining_zh.jsonl'] |
|
|
|
max_length = 2048 |
|
pack_to_max_length = True |
|
|
|
|
|
sequence_parallel_size = 1 |
|
|
|
|
|
batch_size = 16 |
|
accumulative_counts = 1 |
|
accumulative_counts *= sequence_parallel_size |
|
dataloader_num_workers = 0 |
|
max_epochs = 3 |
|
optim_type = AdamW |
|
lr = 3e-5 |
|
betas = (0.9, 0.999) |
|
weight_decay = 0 |
|
max_norm = 1 |
|
warmup_ratio = 0.03 |
|
|
|
|
|
save_steps = 5 |
|
save_total_limit = 3 |
|
|
|
|
|
evaluation_freq = 5 |
|
|
|
SYSTEM = "" |
|
evaluation_inputs = [ |
|
'在《西游记》中,长生不老、神仙可致', '这么多天神天将被捉,悟空怕', 'Please introduce yourself', 'Journey to the West is one of the greatest' |
|
] |
|
|
|
|
|
|
|
|
|
tokenizer = dict( |
|
type=AutoTokenizer.from_pretrained, |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
trust_remote_code=True, |
|
padding_side='right') |
|
|
|
model = dict( |
|
type=SupervisedFinetune, |
|
use_varlen_attn=use_varlen_attn, |
|
llm=dict( |
|
type=AutoModelForCausalLM.from_pretrained, |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
quantization_config=dict( |
|
type=BitsAndBytesConfig, |
|
load_in_4bit=True, |
|
load_in_8bit=False, |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4')), |
|
lora=dict( |
|
type=LoraConfig, |
|
r=64, |
|
lora_alpha=128, |
|
lora_dropout=0.1, |
|
bias='none', |
|
task_type='CAUSAL_LM')) |
|
|
|
|
|
|
|
|
|
train_dataset = dict( |
|
type=process_hf_dataset, |
|
|
|
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_files)), |
|
tokenizer=tokenizer, |
|
max_length=max_length, |
|
dataset_map_fn=None, |
|
|
|
|
|
template_map_fn=None, |
|
remove_unused_columns=True, |
|
shuffle_before_pack=False, |
|
pack_to_max_length=pack_to_max_length, |
|
use_varlen_attn=use_varlen_attn) |
|
|
|
sampler = SequenceParallelSampler \ |
|
if sequence_parallel_size > 1 else DefaultSampler |
|
train_dataloader = dict( |
|
batch_size=batch_size, |
|
num_workers=dataloader_num_workers, |
|
dataset=train_dataset, |
|
sampler=dict(type=sampler, shuffle=False), |
|
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn)) |
|
|
|
|
|
|
|
|
|
|
|
optim_wrapper = dict( |
|
type=AmpOptimWrapper, |
|
optimizer=dict( |
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), |
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), |
|
accumulative_counts=accumulative_counts, |
|
loss_scale='dynamic', |
|
dtype='float16') |
|
|
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type=LinearLR, |
|
start_factor=1e-5, |
|
by_epoch=True, |
|
begin=0, |
|
end=max(1, warmup_ratio * max_epochs), |
|
convert_to_iter_based=True), |
|
dict( |
|
type=CosineAnnealingLR, |
|
eta_min=0.0, |
|
by_epoch=True, |
|
begin=warmup_ratio * max_epochs, |
|
end=max_epochs, |
|
convert_to_iter_based=True) |
|
] |
|
|
|
|
|
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) |
|
|
|
|
|
|
|
|
|
|
|
custom_hooks = [ |
|
dict(type=DatasetInfoHook, tokenizer=tokenizer), |
|
dict( |
|
type=EvaluateChatHook, |
|
tokenizer=tokenizer, |
|
every_n_iters=evaluation_freq, |
|
evaluation_inputs=evaluation_inputs, |
|
system=SYSTEM, |
|
|
|
) |
|
] |
|
|
|
if use_varlen_attn: |
|
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)] |
|
|
|
|
|
default_hooks = dict( |
|
|
|
timer=dict(type=IterTimerHook), |
|
|
|
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), |
|
|
|
param_scheduler=dict(type=ParamSchedulerHook), |
|
|
|
checkpoint=dict( |
|
type=CheckpointHook, |
|
by_epoch=False, |
|
interval=save_steps, |
|
max_keep_ckpts=save_total_limit), |
|
|
|
sampler_seed=dict(type=DistSamplerSeedHook), |
|
) |
|
|
|
|
|
env_cfg = dict( |
|
|
|
cudnn_benchmark=False, |
|
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
|
|
dist_cfg=dict(backend='nccl'), |
|
) |
|
|
|
|
|
|
|
visualizer = dict(type=Visualizer, vis_backends=[dict(type=TensorboardVisBackend)]) |
|
|
|
|
|
log_level = 'INFO' |
|
|
|
|
|
load_from = None |
|
|
|
|
|
resume = False |
|
|
|
|
|
randomness = dict(seed=None, deterministic=False) |
|
|
|
|
|
log_processor = dict(by_epoch=False) |
|
|