# Copyright (c) OpenMMLab. All rights reserved. import torch from datasets import load_dataset from mmengine.dataset import DefaultSampler from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR from peft import LoraConfig from torch.optim import AdamW from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig) from xtuner.dataset import process_hf_dataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import template_map_fn_factory from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook, VarlenAttnArgsToMessageHubHook) from xtuner.engine.runner import TrainLoop from xtuner.model import SupervisedFinetune from xtuner.parallel.sequence import SequenceParallelSampler from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE from mmengine.visualization import Visualizer, TensorboardVisBackend ####################################################################### # PART 1 Settings # ####################################################################### # Model pretrained_model_name_or_path = '/root/models/internlm2_5-7b-chat' use_varlen_attn = False # Data data_dir="/root/wulewule/data" data_files = [f'{data_dir}/heishenghua_pretraining.jsonl', f'{data_dir}/incremental_pretraining_en.jsonl', f'{data_dir}/incremental_pretraining_zh.jsonl'] # prompt_template = PROMPT_TEMPLATE.internlm2_chat max_length = 2048 pack_to_max_length = True # parallel sequence_parallel_size = 1 # Scheduler & Optimizer batch_size = 8 # per_device accumulative_counts = 1 accumulative_counts *= sequence_parallel_size dataloader_num_workers = 0 max_epochs = 3 optim_type = AdamW lr = 3e-5 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip warmup_ratio = 0.03 # Save save_steps = 50 save_total_limit = 3 # Maximum checkpoints to keep (-1 means unlimited) # Evaluate the generation performance during the training evaluation_freq = 5 # SYSTEM = "你是悟了悟了,由xzyun2011开发的AI助手,专注于回答和《黑神话:悟空》这款游戏相关的问题,你想帮助玩家了解更多这款游戏背后的故事和文化知识。\n" SYSTEM = "" evaluation_inputs = [ '在《西游记》中,长生不老、神仙可致', '这么多天神天将被捉,悟空怕', 'Please introduce yourself', 'Journey to the West is one of the greatest' ] ####################################################################### # PART 2 Model & Tokenizer # ####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, padding_side='right') model = dict( type=SupervisedFinetune, use_varlen_attn=use_varlen_attn, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, torch_dtype=torch.float16, quantization_config=dict( type=BitsAndBytesConfig, load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4')), lora=dict( type=LoraConfig, r=64, lora_alpha=128, lora_dropout=0.1, bias='none', task_type='CAUSAL_LM')) ####################################################################### # PART 3 Dataset & Dataloader # ####################################################################### train_dataset = dict( type=process_hf_dataset, # dataset=dict(type=load_dataset, path=data_files), dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_files)), tokenizer=tokenizer, max_length=max_length, dataset_map_fn=None, # template_map_fn=dict( # type=template_map_fn_factory, template=prompt_template), template_map_fn=None, remove_unused_columns=True, shuffle_before_pack=False, pack_to_max_length=pack_to_max_length, use_varlen_attn=use_varlen_attn) sampler = SequenceParallelSampler \ if sequence_parallel_size > 1 else DefaultSampler train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, dataset=train_dataset, sampler=dict(type=sampler, shuffle=False), collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn)) ####################################################################### # PART 4 Scheduler & Optimizer # ####################################################################### # optimizer optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16') # learning policy # More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 param_scheduler = [ dict( type=LinearLR, start_factor=1e-5, by_epoch=True, begin=0, end=max(1, warmup_ratio * max_epochs), convert_to_iter_based=True), dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, begin=warmup_ratio * max_epochs, end=max_epochs, convert_to_iter_based=True) ] # train, val, test setting train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) ####################################################################### # PART 5 Runtime # ####################################################################### # Log the dialogue periodically during the training process, optional custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, system=SYSTEM, # prompt_template=prompt_template ) ] if use_varlen_attn: custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)] # configure default hooks default_hooks = dict( # record the time of every iteration. timer=dict(type=IterTimerHook), # print log every 10 iterations. logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), # enable the parameter scheduler. param_scheduler=dict(type=ParamSchedulerHook), # save checkpoint per `save_steps`. checkpoint=dict( type=CheckpointHook, by_epoch=False, interval=save_steps, max_keep_ckpts=save_total_limit), # set sampler seed in distributed evrionment. sampler_seed=dict(type=DistSamplerSeedHook), ) # configure environment env_cfg = dict( # whether to enable cudnn benchmark cudnn_benchmark=False, # set multi process parameters mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # set distributed parameters dist_cfg=dict(backend='nccl'), ) # set visualizer # visualizer = None visualizer = dict(type=Visualizer, vis_backends=[dict(type=TensorboardVisBackend)]) # set log level log_level = 'INFO' # load from which checkpoint load_from = None # whether to resume training from the loaded checkpoint resume = False # Defaults to use random seed and disable `deterministic` randomness = dict(seed=None, deterministic=False) # set log processor log_processor = dict(by_epoch=False)