Spaces:
Runtime error
Runtime error
File size: 1,637 Bytes
568da45 eb17be3 568da45 8e71a4d 568da45 a5a9283 e9ea56c 6da6fb5 568da45 bc98429 9fd13f7 bc98429 6e4d943 bc98429 4277006 9fd13f7 bc98429 bb145b6 bc98429 a6fd88e 568da45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
import torch
import os
import transformers
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
)
from utils import preprocess
# init
device = 'cpu'
model_dir = "nealcly/detection-longformer"
# load the Longformer detector
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir).to(device)
def detect(input_text,th=-3.08583984375):
if len(input_text.split()) < 30:
return 'It is not reliable to detect text with less than 30 words.'
label2decisions = {
0: "machine-generated",
1: "human-written",
}
tokenize_input = tokenizer(input_text)
tensor_input = torch.tensor([tokenize_input["input_ids"]]).to(device)
outputs = model(tensor_input)
is_machine = -outputs.logits[0][0].item()
if is_machine < th:
decision = 0
else:
decision = 1
return label2decisions[decision]
description_e = """
This is a demo on Github project π [Deepfake Text Detection in the Wild](https://github.com/yafuly/DeepfakeTextDetect).
π― Input the text to be detected, and click ''submit''' to get the detection result, either human-written or machine-generated.
βοΈ It takes about 6~ seconds to generate detection results.
π Check out our [Data Card π](https://huggingface.co/datasets/yaful/DeepfakeTextDetect) and [Model Card π](https://huggingface.co/nealcly/detection-longformer)
"""
iface = gr.Interface(fn=detect, inputs="text", outputs="text", description=description_e)
iface.launch() |