# -*- coding: utf-8 -*- # file: deploy_demo.py # time: 2021/10/10 # author: yangheng # github: https://github.com/yangheng95 # Copyright (C) 2021. All Rights Reserved. import gradio as gr import pandas as pd from pyabsa import APCCheckpointManager sentiment_classifier = APCCheckpointManager.get_sentiment_classifier(checkpoint='fast_lsa_t_v2_Multilingual_acc_88.44_f1_82.66.zip', auto_device=True # False means load model on CPU ) def inference(text): result = sentiment_classifier.infer(text=text, print_result=True, clear_input_samples=True) result = pd.DataFrame({ 'aspect': result['aspect'], 'sentiment': result['sentiment'], 'confidence': [round(c, 3) for c in result['confidence']], 'ref_sentiment': ['' if ref == '-999' else ref for ref in result['ref_sentiment']], 'is_correct': result['ref_check'], }) return result if __name__ == '__main__': iface = gr.Interface( fn=inference, inputs=["text"], examples=[ ['前面老师[ASP]讲课[ASP]很好,后面的[ASP]分享课[ASP]过快了,显得很紧张,听不太清,一点都没有分享的意境,流水帐似的一带而过的味道。希望[ASP]分享课[ASP]改进一下,谢谢大家 !sent!Positive,Negative,Negative'], ['听了老师的[ASP]讲解[ASP]受益匪浅,老师的[ASP]讲解形式[ASP]唯美听之让人陶醉真正做到了寓教于乐。我喜欢这种[ASP]授课方式[ASP] '], ['I have had my [ASP]computer[ASP] for 2 weeks already and it [ASP]works[ASP] perfectly . !sent! Positive, Positive'], ['Strong build though which really adds to its [ASP]durability[ASP] . !sent! Positive'], ['Use [ASP] aspect [ASP] to wrap target aspects. And you can use "!sent!" to tell the model the true sentiment'], ['This demo is trained on the laptop and restaurant and other review datasets from [ASP]ABSADatasets[ASP] (https://github.com/yangheng95/ABSADatasets)'], ['To fit on your data, please train the model on your own data, see the [ASP]PyABSA[ASP] (https://github.com/yangheng95/PyABSA)'], ], outputs="dataframe", description='This demo is trained on the public and community shared datasets from ABSADatasets (https://github.com/yangheng95/ABSADatasets),' ' please feel free to share your data to improve this work. To fit on your data, please train our ATEPC models on your own data,' ' see the PyABSA (https://github.com/yangheng95/PyABSA/tree/release/demos/aspect_polarity_classification)', title='Multilingual Aspect Sentiment Classification for Short Texts (powered by PyABSA)' ) iface.launch()