File size: 6,867 Bytes
88f8e2a
 
 
 
 
 
 
 
 
c24b83f
 
 
88f8e2a
 
 
 
 
 
 
c24b83f
 
 
 
88f8e2a
 
 
c24b83f
88f8e2a
c24b83f
88f8e2a
c24b83f
 
 
 
 
 
 
88f8e2a
 
c24b83f
 
 
88f8e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24b83f
 
 
88f8e2a
c24b83f
88f8e2a
 
 
 
 
c24b83f
88f8e2a
 
 
1423e45
88f8e2a
 
 
c24b83f
88f8e2a
 
 
 
 
c24b83f
88f8e2a
 
 
 
 
 
 
 
 
 
c24b83f
88f8e2a
 
 
 
 
 
 
 
 
 
 
 
c24b83f
 
 
 
 
 
 
 
9a9f7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24b83f
88f8e2a
 
9a9f7ec
88f8e2a
9a9f7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88f8e2a
9a9f7ec
 
 
 
 
88f8e2a
9a9f7ec
fcb332b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf-8 -*-
# file: app.py
# time: 17:08 2023/3/6
# author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
# github: https://github.com/yangheng95
# huggingface: https://huggingface.co/yangheng
# google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
# Copyright (C) 2023. All Rights Reserved.

import random
import gradio as gr
import pandas as pd
from pyabsa import (
    download_all_available_datasets,
    AspectTermExtraction as ATEPC,
    TaskCodeOption,
    available_checkpoints,
)
from pyabsa import AspectSentimentTripletExtraction as ASTE
from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset

download_all_available_datasets()

atepc_dataset_items = {dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()}
aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()}


def get_atepc_example(dataset):
    task = TaskCodeOption.Aspect_Polarity_Classification
    dataset_file = detect_infer_dataset(atepc_dataset_items[dataset], task)

    for fname in dataset_file:
        lines = []
        if isinstance(fname, str):
            fname = [fname]

        for f in fname:
            print("loading: {}".format(f))
            fin = open(f, "r", encoding="utf-8")
            lines.extend(fin.readlines())
            fin.close()
        for i in range(len(lines)):
            lines[i] = (
                lines[i][: lines[i].find("$LABEL$")]
                .replace("[B-ASP]", "")
                .replace("[E-ASP]", "")
                .strip()
            )
        return sorted(set(lines), key=lines.index)


def get_aste_example(dataset):
    task = TaskCodeOption.Aspect_Sentiment_Triplet_Extraction
    dataset_file = detect_infer_dataset(aste_dataset_items[dataset], task)

    for fname in dataset_file:
        lines = []
        if isinstance(fname, str):
            fname = [fname]

        for f in fname:
            print("loading: {}".format(f))
            fin = open(f, "r", encoding="utf-8")
            lines.extend(fin.readlines())
            fin.close()
        return sorted(set(lines), key=lines.index)


available_checkpoints("ASTE", True)

atepc_dataset_dict = {
    dataset.name: get_atepc_example(dataset.name)
    for dataset in ATEPC.ATEPCDatasetList()
}
aspect_extractor = ATEPC.AspectExtractor(checkpoint="multilingual")

aste_dataset_dict = {
    dataset.name: get_aste_example(dataset.name) for dataset in ASTE.ASTEDatasetList()
}
triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="multilingual")


def perform_atepc_inference(text, dataset):
    if not text:
        text = atepc_dataset_dict[dataset][
            random.randint(0, len(atepc_dataset_dict[dataset]) - 1)
        ]

    result = aspect_extractor.predict(text, pred_sentiment=True)

    result = pd.DataFrame(
        {
            "aspect": result["aspect"],
            "sentiment": result["sentiment"],
            # 'probability': result[0]['probs'],
            "confidence": [round(x, 4) for x in result["confidence"]],
            "position": result["position"],
        }
    )
    return result, "{}".format(text)


def perform_aste_inference(text, dataset):
    if not text:
        text = aste_dataset_dict[dataset][
            random.randint(0, len(aste_dataset_dict[dataset]) - 1)
        ]

    result = triplet_extractor.predict(text)

    pred_triplets = pd.DataFrame(result["Triplets"])
    true_triplets = pd.DataFrame(result["True Triplets"])
    return pred_triplets, true_triplets, "{}".format(text)


demo = gr.Blocks()

with demo:
    with gr.Row():

        with gr.Column():
            gr.Markdown("# <p align='center'>Aspect Sentiment Triplet Extraction !</p>")

            with gr.Row():
                with gr.Column():
                    aste_input_sentence = gr.Textbox(
                        placeholder="Leave this box blank and choose a dataset will give you a random example...",
                        label="Example:",
                    )
                    gr.Markdown(
                        "You can find code and dataset at [ASTE examples](https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)"
                    )
                    aste_dataset_ids = gr.Radio(
                        choices=[dataset.name for dataset in ASTE.ASTEDatasetList()[:-1]],
                        value="Restaurant14",
                        label="Datasets",
                    )
                    aste_inference_button = gr.Button("Let's go!")

                    aste_output_text = gr.TextArea(label="Example:")
                    aste_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
                    aste_output_true_df = gr.DataFrame(label="Original Triplets:")

                    aste_inference_button.click(
                        fn=perform_aste_inference,
                        inputs=[aste_input_sentence, aste_dataset_ids],
                        outputs=[aste_output_pred_df, aste_output_true_df, aste_output_text],
                    )

        with gr.Column():
            gr.Markdown(
                "# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>"
            )
            with gr.Row():
                with gr.Column():
                    atepc_input_sentence = gr.Textbox(
                        placeholder="Leave this box blank and choose a dataset will give you a random example...",
                        label="Example:",
                    )
                    gr.Markdown(
                        "You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)"
                    )
                    atepc_dataset_ids = gr.Radio(
                        choices=[dataset.name for dataset in ATEPC.ATEPCDatasetList()[:-1]],
                        value="Laptop14",
                        label="Datasets",
                    )
                    atepc_inference_button = gr.Button("Let's go!")

                    atepc_output_text = gr.TextArea(label="Example:")
                    atepc_output_df = gr.DataFrame(label="Prediction Results:")

                    atepc_inference_button.click(
                        fn=perform_atepc_inference,
                        inputs=[atepc_input_sentence, atepc_dataset_ids],
                        outputs=[atepc_output_df, atepc_output_text],
                    )
    gr.Markdown(
        """### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
        ### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
        [![Downloads](https://pepy.tech/badge/pyabsa)](https://pepy.tech/project/pyabsa) 
        [![Downloads](https://pepy.tech/badge/pyabsa/month)](https://pepy.tech/project/pyabsa)
        """
    )

demo.launch()