File size: 2,684 Bytes
3c495cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
This module contains functions for generating responses using LLMs.
"""

import enum
from random import sample

import gradio as gr
from litellm import completion

# TODO(#1): Add more models.
SUPPORTED_MODELS = [
    "gpt-4", "gpt-4-0125-preview", "gpt-3.5-turbo", "gemini-pro"
]


class Category(enum.Enum):
  SUMMARIZE = "Summarize"
  TRANSLATE = "Translate"


def get_instruction(category, source_lang, target_lang):
  if category == Category.SUMMARIZE.value:
    return "Summarize the following text in its original language."
  if category == Category.TRANSLATE.value:
    return f"Translate the following text from {source_lang} to {target_lang}."


def response_generator(response: str):
  for part in response:
    content = part.choices[0].delta.content
    if content is None:
      continue

    # To simulate a stream, we yield each character of the response.
    for character in content:
      yield character


def get_responses(user_prompt, category, source_lang, target_lang):
  if not category:
    raise gr.Error("Please select a category.")

  if category == Category.TRANSLATE.value and (not source_lang or
                                               not target_lang):
    raise gr.Error("Please select source and target languages.")

  models = sample(SUPPORTED_MODELS, 2)
  instruction = get_instruction(category, source_lang, target_lang)

  generators = []
  for model in models:
    try:
      # TODO(#1): Allow user to set configuration.
      response = completion(model=model,
                            messages=[{
                                "content": instruction,
                                "role": "system"
                            }, {
                                "content": user_prompt,
                                "role": "user"
                            }],
                            stream=True)
      generators.append(response_generator(response))

    # TODO(#1): Narrow down the exception type.
    except Exception as e:  # pylint: disable=broad-except
      print(f"Error in bot_response: {e}")
      raise e

  responses = ["", ""]

  # It simulates concurrent response generation from two models.
  while True:
    stop = True

    for i in range(len(generators)):
      try:
        yielded = next(generators[i])

        if yielded is None:
          continue

        responses[i] += yielded
        stop = False

        yield responses + models + [instruction]

      except StopIteration:
        pass

      # TODO(#1): Narrow down the exception type.
      except Exception as e:  # pylint: disable=broad-except
        print(f"Error in generator: {e}")
        raise e

    if stop:
      break