Spaces:
Running
Running
File size: 5,383 Bytes
a19f11e 076f69b 65566f3 a19f11e 50a5912 076f69b 50a5912 076f69b 65566f3 a19f11e 65566f3 076f69b a19f11e 076f69b 65566f3 a19f11e 65566f3 a19f11e 65566f3 a19f11e 519572d a19f11e 65566f3 076f69b 65566f3 076f69b 65566f3 076f69b 65566f3 076f69b a19f11e 076f69b a19f11e 65566f3 b272a27 076f69b a19f11e 076f69b 65566f3 a19f11e 65566f3 b272a27 076f69b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
"""
It provides a leaderboard component.
"""
from collections import defaultdict
import enum
import math
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
from google.cloud.firestore_v1 import base_query
import gradio as gr
import pandas as pd
from credentials import get_credentials_json
# TODO(#21): Fix auto-reload issue related to the initialization of Firebase.
firebase_admin.initialize_app(credentials.Certificate(get_credentials_json()))
db = firestore.client()
SUPPORTED_TRANSLATION_LANGUAGES = [
"Korean", "English", "Chinese", "Japanese", "Spanish", "French"
]
class LeaderboardTab(enum.Enum):
SUMMARIZATION = "Summarization"
TRANSLATION = "Translation"
# Ref: https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing#scrollTo=QLGc6DwxyvQc pylint: disable=line-too-long
def compute_elo(battles, k=4, scale=400, base=10, initial_rating=1000):
rating = defaultdict(lambda: initial_rating)
for model_a, model_b, winner in battles[["model_a", "model_b",
"winner"]].itertuples(index=False):
rating_a = rating[model_a]
rating_b = rating[model_b]
expected_score_a = 1 / (1 + base**((rating_b - rating_a) / scale))
expected_score_b = 1 / (1 + base**((rating_a - rating_b) / scale))
scored_point_a = 0.5 if winner == "tie" else int(winner == "model_a")
rating[model_a] += k * (scored_point_a - expected_score_a)
rating[model_b] += k * (1 - scored_point_a - expected_score_b)
return rating
def get_docs(tab: str, source_lang: str = None, target_lang: str = None):
if tab == LeaderboardTab.SUMMARIZATION:
return db.collection("arena-summarizations").order_by("timestamp").stream()
if tab == LeaderboardTab.TRANSLATION:
collection = db.collection("arena-translations").order_by("timestamp")
if source_lang:
collection = collection.where(filter=base_query.FieldFilter(
"source_language", "==", source_lang.lower()))
if target_lang:
collection = collection.where(filter=base_query.FieldFilter(
"target_language", "==", target_lang.lower()))
return collection.stream()
def load_elo_ratings(tab, source_lang: str = None, target_lang: str = None):
docs = get_docs(tab, source_lang, target_lang)
battles = []
for doc in docs:
data = doc.to_dict()
battles.append({
"model_a": data["model_a"],
"model_b": data["model_b"],
"winner": data["winner"]
})
if not battles:
return
battles = pd.DataFrame(battles)
ratings = compute_elo(battles)
sorted_ratings = sorted(ratings.items(), key=lambda x: x[1], reverse=True)
return [[i + 1, model, math.floor(rating + 0.5)]
for i, (model, rating) in enumerate(sorted_ratings)]
LEADERBOARD_UPDATE_INTERVAL = 600 # 10 minutes
LEADERBOARD_INFO = "The leaderboard is updated every 10 minutes."
DEFAULT_FILTER_OPTIONS = {
"source_language": "English",
"target_language": "Spanish"
}
filtered_dataframe = gr.DataFrame(
headers=["Rank", "Model", "Elo rating"],
datatype=["number", "str", "number"],
value=lambda: load_elo_ratings(
LeaderboardTab.TRANSLATION, DEFAULT_FILTER_OPTIONS[
"source_language"], DEFAULT_FILTER_OPTIONS["target_language"]),
elem_classes="leaderboard")
def update_filtered_leaderboard(source_lang, target_lang):
new_value = load_elo_ratings(LeaderboardTab.TRANSLATION, source_lang,
target_lang)
return gr.update(value=new_value)
def build_leaderboard():
with gr.Tabs():
with gr.Tab(LeaderboardTab.SUMMARIZATION.value):
gr.Dataframe(headers=["Rank", "Model", "Elo rating"],
datatype=["number", "str", "number"],
value=lambda: load_elo_ratings(LeaderboardTab.SUMMARIZATION),
every=LEADERBOARD_UPDATE_INTERVAL,
elem_classes="leaderboard")
gr.Markdown(LEADERBOARD_INFO)
with gr.Tab(LeaderboardTab.TRANSLATION.value):
with gr.Accordion("Filter", open=False):
with gr.Row():
source_language = gr.Dropdown(
choices=SUPPORTED_TRANSLATION_LANGUAGES,
label="Source language",
value=DEFAULT_FILTER_OPTIONS["source_language"],
interactive=True)
target_language = gr.Dropdown(
choices=SUPPORTED_TRANSLATION_LANGUAGES,
label="Target language",
value=DEFAULT_FILTER_OPTIONS["target_language"],
interactive=True)
source_language.change(fn=update_filtered_leaderboard,
inputs=[source_language, target_language],
outputs=filtered_dataframe)
target_language.change(fn=update_filtered_leaderboard,
inputs=[source_language, target_language],
outputs=filtered_dataframe)
with gr.Row():
filtered_dataframe.render()
gr.Dataframe(headers=["Rank", "Model", "Elo rating"],
datatype=["number", "str", "number"],
value=lambda: load_elo_ratings(LeaderboardTab.TRANSLATION),
every=LEADERBOARD_UPDATE_INTERVAL,
elem_classes="leaderboard")
gr.Markdown(LEADERBOARD_INFO)
|