Spaces:
Running
Running
""" | |
This module contains functions for generating responses using LLMs. | |
""" | |
import enum | |
import logging | |
from random import sample | |
from typing import List | |
from uuid import uuid4 | |
from firebase_admin import firestore | |
import gradio as gr | |
from db import db | |
from model import ContextWindowExceededError | |
from model import Model | |
from model import supported_models | |
import rate_limit | |
from rate_limit import rate_limiter | |
logging.basicConfig() | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
# TODO(#37): Move DB operations to db.py. | |
def get_history_collection(category: str): | |
if category == Category.SUMMARIZE.value: | |
return db.collection("arena-summarization-history") | |
if category == Category.TRANSLATE.value: | |
return db.collection("arena-translation-history") | |
def create_history(category: str, model_name: str, instruction: str, | |
prompt: str, response: str): | |
doc_id = uuid4().hex | |
doc = { | |
"id": doc_id, | |
"model": model_name, | |
"instruction": instruction, | |
"prompt": prompt, | |
"response": response, | |
"timestamp": firestore.SERVER_TIMESTAMP | |
} | |
doc_ref = get_history_collection(category).document(doc_id) | |
doc_ref.set(doc) | |
class Category(enum.Enum): | |
SUMMARIZE = "Summarize" | |
TRANSLATE = "Translate" | |
# TODO(#31): Let the model builders set the instruction. | |
def get_instruction(category: str, model: Model, source_lang: str, | |
target_lang: str): | |
if category == Category.SUMMARIZE.value: | |
return model.summarize_instruction | |
if category == Category.TRANSLATE.value: | |
return model.translate_instruction.format(source_lang=source_lang, | |
target_lang=target_lang) | |
def get_responses(prompt: str, category: str, source_lang: str, | |
target_lang: str, token: str): | |
if not category: | |
raise gr.Error("Please select a category.") | |
if category == Category.TRANSLATE.value and (not source_lang or | |
not target_lang): | |
raise gr.Error("Please select source and target languages.") | |
try: | |
rate_limiter.check_rate_limit(token) | |
except rate_limit.InvalidTokenException as e: | |
raise gr.Error( | |
"Your session has expired. Please refresh the page to continue.") from e | |
except rate_limit.UserRateLimitException as e: | |
raise gr.Error( | |
"You have made too many requests in a short period. Please try again later." # pylint: disable=line-too-long | |
) from e | |
except rate_limit.SystemRateLimitException as e: | |
raise gr.Error( | |
"Our service is currently experiencing high traffic. Please try again later." # pylint: disable=line-too-long | |
) from e | |
models: List[Model] = sample(list(supported_models), 2) | |
responses = [] | |
for model in models: | |
instruction = get_instruction(category, model, source_lang, target_lang) | |
try: | |
# TODO(#1): Allow user to set configuration. | |
response = model.completion(instruction, prompt) | |
create_history(category, model.name, instruction, prompt, response) | |
responses.append(response) | |
except ContextWindowExceededError as e: | |
logger.exception("Context window exceeded for model %s.", model.name) | |
raise gr.Error( | |
"The prompt is too long. Please try again with a shorter prompt." | |
) from e | |
except Exception as e: | |
logger.exception("Failed to get response from model %s.", model.name) | |
raise gr.Error("Failed to get response. Please try again.") from e | |
model_names = [model.name for model in models] | |
# It simulates concurrent stream response generation. | |
max_response_length = max(len(response) for response in responses) | |
for i in range(max_response_length): | |
yield [response[:i + 1] for response in responses | |
] + model_names + [instruction] | |
yield responses + model_names + [instruction] | |