arena / response.py
Kang Suhyun
[#37] Store ELO ratings in DB after calculation (#112)
5352a13 unverified
raw
history blame
3.87 kB
"""
This module contains functions for generating responses using LLMs.
"""
import enum
import logging
from random import sample
from typing import List
from uuid import uuid4
from firebase_admin import firestore
import gradio as gr
from db import db
from model import ContextWindowExceededError
from model import Model
from model import supported_models
import rate_limit
from rate_limit import rate_limiter
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# TODO(#37): Move DB operations to db.py.
def get_history_collection(category: str):
if category == Category.SUMMARIZE.value:
return db.collection("arena-summarization-history")
if category == Category.TRANSLATE.value:
return db.collection("arena-translation-history")
def create_history(category: str, model_name: str, instruction: str,
prompt: str, response: str):
doc_id = uuid4().hex
doc = {
"id": doc_id,
"model": model_name,
"instruction": instruction,
"prompt": prompt,
"response": response,
"timestamp": firestore.SERVER_TIMESTAMP
}
doc_ref = get_history_collection(category).document(doc_id)
doc_ref.set(doc)
class Category(enum.Enum):
SUMMARIZE = "Summarize"
TRANSLATE = "Translate"
# TODO(#31): Let the model builders set the instruction.
def get_instruction(category: str, model: Model, source_lang: str,
target_lang: str):
if category == Category.SUMMARIZE.value:
return model.summarize_instruction
if category == Category.TRANSLATE.value:
return model.translate_instruction.format(source_lang=source_lang,
target_lang=target_lang)
def get_responses(prompt: str, category: str, source_lang: str,
target_lang: str, token: str):
if not category:
raise gr.Error("Please select a category.")
if category == Category.TRANSLATE.value and (not source_lang or
not target_lang):
raise gr.Error("Please select source and target languages.")
try:
rate_limiter.check_rate_limit(token)
except rate_limit.InvalidTokenException as e:
raise gr.Error(
"Your session has expired. Please refresh the page to continue.") from e
except rate_limit.UserRateLimitException as e:
raise gr.Error(
"You have made too many requests in a short period. Please try again later." # pylint: disable=line-too-long
) from e
except rate_limit.SystemRateLimitException as e:
raise gr.Error(
"Our service is currently experiencing high traffic. Please try again later." # pylint: disable=line-too-long
) from e
models: List[Model] = sample(list(supported_models), 2)
responses = []
for model in models:
instruction = get_instruction(category, model, source_lang, target_lang)
try:
# TODO(#1): Allow user to set configuration.
response = model.completion(instruction, prompt)
create_history(category, model.name, instruction, prompt, response)
responses.append(response)
except ContextWindowExceededError as e:
logger.exception("Context window exceeded for model %s.", model.name)
raise gr.Error(
"The prompt is too long. Please try again with a shorter prompt."
) from e
except Exception as e:
logger.exception("Failed to get response from model %s.", model.name)
raise gr.Error("Failed to get response. Please try again.") from e
model_names = [model.name for model in models]
# It simulates concurrent stream response generation.
max_response_length = max(len(response) for response in responses)
for i in range(max_response_length):
yield [response[:i + 1] for response in responses
] + model_names + [instruction]
yield responses + model_names + [instruction]