arena / app.py
suhyun.kang
[#19] Replace FastChat with LiteLLM
000d4f2
raw
history blame
5.89 kB
"""
It provides a platform for comparing the responses of two LLMs.
"""
import enum
from random import sample
from uuid import uuid4
import firebase_admin
from firebase_admin import firestore
import gradio as gr
from litellm import completion
# TODO(#21): Fix auto-reload issue related to the initialization of Firebase.
db_app = firebase_admin.initialize_app()
db = firestore.client()
# TODO(#1): Add more models.
SUPPORTED_MODELS = [
"gpt-4", "gpt-4-0125-preview", "gpt-3.5-turbo", "gemini-pro"
]
# TODO(#4): Add more languages.
SUPPORTED_TRANSLATION_LANGUAGES = ["Korean", "English"]
class ResponseType(enum.Enum):
SUMMARIZE = "Summarize"
TRANSLATE = "Translate"
class VoteOptions(enum.Enum):
MODEL_A = "Model A is better"
MODEL_B = "Model B is better"
TIE = "Tie"
def vote(vote_button, response_a, response_b, model_a_name, model_b_name,
user_prompt, res_type, source_lang, target_lang):
doc_id = uuid4().hex
winner = VoteOptions(vote_button).name.lower()
if res_type == ResponseType.SUMMARIZE.value:
doc_ref = db.collection("arena-summarizations").document(doc_id)
doc_ref.set({
"id": doc_id,
"prompt": user_prompt,
"model_a": model_a_name,
"model_b": model_b_name,
"model_a_response": response_a,
"model_b_response": response_b,
"winner": winner,
"timestamp": firestore.SERVER_TIMESTAMP
})
return
if res_type == ResponseType.TRANSLATE.value:
doc_ref = db.collection("arena-translations").document(doc_id)
doc_ref.set({
"id": doc_id,
"prompt": user_prompt,
"model_a": model_a_name,
"model_b": model_b_name,
"model_a_response": response_a,
"model_b_response": response_b,
"source_language": source_lang.lower(),
"target_language": target_lang.lower(),
"winner": winner,
"timestamp": firestore.SERVER_TIMESTAMP
})
def response_generator(response: str):
for part in response:
content = part.choices[0].delta.content
if content is None:
continue
# To simulate a stream, we yield each character of the response.
for character in content:
yield character
def get_responses(user_prompt):
models = sample(SUPPORTED_MODELS, 2)
generators = []
for model in models:
try:
# TODO(#1): Allow user to set configuration.
response = completion(model=model,
messages=[{
"content": user_prompt,
"role": "user"
}],
stream=True)
generators.append(response_generator(response))
# TODO(#1): Narrow down the exception type.
except Exception as e: # pylint: disable=broad-except
print(f"Error in bot_response: {e}")
raise e
responses = ["", ""]
# It simulates concurrent response generation from two models.
while True:
stop = True
for i in range(len(generators)):
try:
yielded = next(generators[i])
if yielded is None:
continue
responses[i] += yielded
stop = False
yield responses + models
except StopIteration:
pass
# TODO(#1): Narrow down the exception type.
except Exception as e: # pylint: disable=broad-except
print(f"Error in generator: {e}")
raise e
if stop:
break
with gr.Blocks() as app:
with gr.Row():
response_type_radio = gr.Radio(
[response_type.value for response_type in ResponseType],
label="Response type",
info="Choose the type of response you want from the model.")
source_language = gr.Dropdown(
choices=SUPPORTED_TRANSLATION_LANGUAGES,
label="Source language",
info="Choose the source language for translation.",
interactive=True,
visible=False)
target_language = gr.Dropdown(
choices=SUPPORTED_TRANSLATION_LANGUAGES,
label="Target language",
info="Choose the target language for translation.",
interactive=True,
visible=False)
def update_language_visibility(response_type):
visible = response_type == ResponseType.TRANSLATE.value
return {
source_language: gr.Dropdown(visible=visible),
target_language: gr.Dropdown(visible=visible)
}
response_type_radio.change(update_language_visibility, response_type_radio,
[source_language, target_language])
model_names = [gr.State(None), gr.State(None)]
response_boxes = [gr.State(None), gr.State(None)]
prompt = gr.TextArea(label="Prompt", lines=4)
submit = gr.Button()
with gr.Row():
response_boxes[0] = gr.Textbox(label="Model A", interactive=False)
response_boxes[1] = gr.Textbox(label="Model B", interactive=False)
# TODO(#5): Display it only after the user submits the prompt.
# TODO(#6): Block voting if the response_type is not set.
# TODO(#6): Block voting if the user already voted.
with gr.Row():
option_a = gr.Button(VoteOptions.MODEL_A.value)
option_b = gr.Button("Model B is better")
tie = gr.Button("Tie")
# TODO(#7): Hide it until the user votes.
with gr.Accordion("Show models", open=False):
with gr.Row():
model_names[0] = gr.Textbox(label="Model A", interactive=False)
model_names[1] = gr.Textbox(label="Model B", interactive=False)
submit.click(get_responses, prompt, response_boxes + model_names)
common_inputs = response_boxes + model_names + [
prompt, response_type_radio, source_language, target_language
]
option_a.click(vote, [option_a] + common_inputs)
option_b.click(vote, [option_b] + common_inputs)
tie.click(vote, [tie] + common_inputs)
if __name__ == "__main__":
# We need to enable queue to use generators.
app.queue()
app.launch(debug=True)