Spaces:
Running
Running
""" | |
It provides a platform for comparing the responses of two LLMs. | |
""" | |
import enum | |
from random import sample | |
from uuid import uuid4 | |
import firebase_admin | |
from firebase_admin import firestore | |
import gradio as gr | |
from litellm import completion | |
from leaderboard import build_leaderboard | |
# TODO(#21): Fix auto-reload issue related to the initialization of Firebase. | |
db_app = firebase_admin.initialize_app() | |
db = firestore.client() | |
# TODO(#1): Add more models. | |
SUPPORTED_MODELS = [ | |
"gpt-4", "gpt-4-0125-preview", "gpt-3.5-turbo", "gemini-pro" | |
] | |
# TODO(#4): Add more languages. | |
SUPPORTED_TRANSLATION_LANGUAGES = ["Korean", "English"] | |
class ResponseType(enum.Enum): | |
SUMMARIZE = "Summarize" | |
TRANSLATE = "Translate" | |
class VoteOptions(enum.Enum): | |
MODEL_A = "Model A is better" | |
MODEL_B = "Model B is better" | |
TIE = "Tie" | |
def vote(vote_button, response_a, response_b, model_a_name, model_b_name, | |
user_prompt, res_type, source_lang, target_lang): | |
doc_id = uuid4().hex | |
winner = VoteOptions(vote_button).name.lower() | |
if res_type == ResponseType.SUMMARIZE.value: | |
doc_ref = db.collection("arena-summarizations").document(doc_id) | |
doc_ref.set({ | |
"id": doc_id, | |
"prompt": user_prompt, | |
"model_a": model_a_name, | |
"model_b": model_b_name, | |
"model_a_response": response_a, | |
"model_b_response": response_b, | |
"winner": winner, | |
"timestamp": firestore.SERVER_TIMESTAMP | |
}) | |
return | |
if res_type == ResponseType.TRANSLATE.value: | |
doc_ref = db.collection("arena-translations").document(doc_id) | |
doc_ref.set({ | |
"id": doc_id, | |
"prompt": user_prompt, | |
"model_a": model_a_name, | |
"model_b": model_b_name, | |
"model_a_response": response_a, | |
"model_b_response": response_b, | |
"source_language": source_lang.lower(), | |
"target_language": target_lang.lower(), | |
"winner": winner, | |
"timestamp": firestore.SERVER_TIMESTAMP | |
}) | |
def response_generator(response: str): | |
for part in response: | |
content = part.choices[0].delta.content | |
if content is None: | |
continue | |
# To simulate a stream, we yield each character of the response. | |
for character in content: | |
yield character | |
def get_responses(user_prompt): | |
models = sample(SUPPORTED_MODELS, 2) | |
generators = [] | |
for model in models: | |
try: | |
# TODO(#1): Allow user to set configuration. | |
response = completion(model=model, | |
messages=[{ | |
"content": user_prompt, | |
"role": "user" | |
}], | |
stream=True) | |
generators.append(response_generator(response)) | |
# TODO(#1): Narrow down the exception type. | |
except Exception as e: # pylint: disable=broad-except | |
print(f"Error in bot_response: {e}") | |
raise e | |
responses = ["", ""] | |
# It simulates concurrent response generation from two models. | |
while True: | |
stop = True | |
for i in range(len(generators)): | |
try: | |
yielded = next(generators[i]) | |
if yielded is None: | |
continue | |
responses[i] += yielded | |
stop = False | |
yield responses + models | |
except StopIteration: | |
pass | |
# TODO(#1): Narrow down the exception type. | |
except Exception as e: # pylint: disable=broad-except | |
print(f"Error in generator: {e}") | |
raise e | |
if stop: | |
break | |
with gr.Blocks() as app: | |
with gr.Row(): | |
response_type_radio = gr.Radio( | |
[response_type.value for response_type in ResponseType], | |
label="Response type", | |
info="Choose the type of response you want from the model.") | |
source_language = gr.Dropdown( | |
choices=SUPPORTED_TRANSLATION_LANGUAGES, | |
label="Source language", | |
info="Choose the source language for translation.", | |
interactive=True, | |
visible=False) | |
target_language = gr.Dropdown( | |
choices=SUPPORTED_TRANSLATION_LANGUAGES, | |
label="Target language", | |
info="Choose the target language for translation.", | |
interactive=True, | |
visible=False) | |
def update_language_visibility(response_type): | |
visible = response_type == ResponseType.TRANSLATE.value | |
return { | |
source_language: gr.Dropdown(visible=visible), | |
target_language: gr.Dropdown(visible=visible) | |
} | |
response_type_radio.change(update_language_visibility, response_type_radio, | |
[source_language, target_language]) | |
model_names = [gr.State(None), gr.State(None)] | |
response_boxes = [gr.State(None), gr.State(None)] | |
prompt = gr.TextArea(label="Prompt", lines=4) | |
submit = gr.Button() | |
with gr.Row(): | |
response_boxes[0] = gr.Textbox(label="Model A", interactive=False) | |
response_boxes[1] = gr.Textbox(label="Model B", interactive=False) | |
# TODO(#5): Display it only after the user submits the prompt. | |
# TODO(#6): Block voting if the response_type is not set. | |
# TODO(#6): Block voting if the user already voted. | |
with gr.Row(): | |
option_a = gr.Button(VoteOptions.MODEL_A.value) | |
option_b = gr.Button("Model B is better") | |
tie = gr.Button("Tie") | |
# TODO(#7): Hide it until the user votes. | |
with gr.Accordion("Show models", open=False): | |
with gr.Row(): | |
model_names[0] = gr.Textbox(label="Model A", interactive=False) | |
model_names[1] = gr.Textbox(label="Model B", interactive=False) | |
submit.click(get_responses, prompt, response_boxes + model_names) | |
common_inputs = response_boxes + model_names + [ | |
prompt, response_type_radio, source_language, target_language | |
] | |
option_a.click(vote, [option_a] + common_inputs) | |
option_b.click(vote, [option_b] + common_inputs) | |
tie.click(vote, [tie] + common_inputs) | |
build_leaderboard(db) | |
if __name__ == "__main__": | |
# We need to enable queue to use generators. | |
app.queue() | |
app.launch(debug=True) | |