""" It provides a platform for comparing the responses of two LLMs. """ from random import sample from fastchat.serve import gradio_web_server from fastchat.serve.gradio_web_server import bot_response import gradio as gr # TODO(#1): Add more models. SUPPORTED_MODELS = ["gpt-4", "gpt-4-turbo", "gpt-3.5-turbo", "gemini-pro"] def user(user_prompt): model_pair = sample(SUPPORTED_MODELS, 2) new_state_a = gradio_web_server.State(model_pair[0]) new_state_b = gradio_web_server.State(model_pair[1]) for state in [new_state_a, new_state_b]: state.conv.append_message(state.conv.roles[0], user_prompt) state.conv.append_message(state.conv.roles[1], None) state.skip_next = False return [ new_state_a, new_state_b, new_state_a.model_name, new_state_b.model_name ] def bot(state_a, state_b, request: gr.Request): new_states = [state_a, state_b] generators = [] for state in new_states: try: # TODO(#1): Allow user to set configuration. # bot_response returns a generator yielding states. generator = bot_response(state, temperature=0.9, top_p=0.9, max_new_tokens=100, request=request) generators.append(generator) # TODO(#1): Narrow down the exception type. except Exception as e: # pylint: disable=broad-except print(f"Error in bot_response: {e}") raise e new_responses = [None, None] # It simulates concurrent response generation from two models. while True: stop = True for i in range(len(generators)): try: yielded = next(generators[i]) # The generator yields a tuple, with the new state as the first item. new_state = yielded[0] new_states[i] = new_state # The last item from 'messages' represents the response to the prompt. bot_message = new_state.conv.messages[-1] # Each message in conv.messages is structured as [role, message], # so we extract the last message component. new_responses[i] = bot_message[-1] stop = False except StopIteration: pass # TODO(#1): Narrow down the exception type. except Exception as e: # pylint: disable=broad-except print(f"Error in generator: {e}") raise e yield new_states + new_responses if stop: break with gr.Blocks() as app: model_names = [gr.State(None), gr.State(None)] responses = [gr.State(None), gr.State(None)] # states stores FastChat-specific conversation states. states = [gr.State(None), gr.State(None)] prompt = gr.TextArea(label="Prompt", lines=4) submit = gr.Button() with gr.Row(): responses[0] = gr.Textbox(label="Model A", interactive=False) responses[1] = gr.Textbox(label="Model B", interactive=False) with gr.Accordion("Show models", open=False): with gr.Row(): model_names[0] = gr.Textbox(label="Model A", interactive=False) model_names[1] = gr.Textbox(label="Model B", interactive=False) submit.click(user, prompt, states + model_names, queue=False).then(bot, states, states + responses) if __name__ == "__main__": # We need to enable queue to use generators. app.queue() app.launch(debug=True)