Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,667 Bytes
9eb3654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import json
import logging
import os
import pathlib
import re
from copy import deepcopy
from pathlib import Path
from typing import Optional, Tuple, Union, Dict, Any
import torch
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
get_cast_dtype
from .openai import load_openai_model
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
from .transform import image_transform
from .tokenizer import HFTokenizer, tokenize
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
def _natural_key(string_):
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def _rescan_model_configs():
global _MODEL_CONFIGS
config_ext = ('.json',)
config_files = []
for config_path in _MODEL_CONFIG_PATHS:
if config_path.is_file() and config_path.suffix in config_ext:
config_files.append(config_path)
elif config_path.is_dir():
for ext in config_ext:
config_files.extend(config_path.glob(f'*{ext}'))
for cf in config_files:
with open(cf, "r", encoding="utf8") as f:
model_cfg = json.load(f)
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
_MODEL_CONFIGS[cf.stem] = model_cfg
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
_rescan_model_configs() # initial populate of model config registry
def list_models():
""" enumerate available model architectures based on config files """
return list(_MODEL_CONFIGS.keys())
def add_model_config(path):
""" add model config path or file and update registry """
if not isinstance(path, Path):
path = Path(path)
_MODEL_CONFIG_PATHS.append(path)
_rescan_model_configs()
def get_model_config(model_name):
if model_name in _MODEL_CONFIGS:
return deepcopy(_MODEL_CONFIGS[model_name])
else:
return None
def get_tokenizer(model_name):
config = get_model_config(model_name)
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
return tokenizer
# loading openai CLIP weights when is_openai=True for training
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
if is_openai:
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
state_dict = model.state_dict()
for key in ["input_resolution", "context_length", "vocab_size"]:
state_dict.pop(key, None)
else:
checkpoint = torch.load(checkpoint_path, map_location=map_location)
for mk in model_key.split('|'):
if isinstance(checkpoint, dict) and mk in checkpoint:
state_dict = checkpoint[mk]
break
else:
state_dict = checkpoint
if next(iter(state_dict.items()))[0].startswith('module'):
state_dict = {k[7:]: v for k, v in state_dict.items()}
for k in skip_list:
if k in list(state_dict.keys()):
logging.info(f"Removing key {k} from pretrained checkpoint")
del state_dict[k]
if os.getenv('RoPE') == '1':
for k in list(state_dict.keys()):
if 'freqs_cos' in k or 'freqs_sin' in k:
del state_dict[k]
return state_dict
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
# detect old format and make compatible with new format
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
state_dict = convert_to_custom_text_state_dict(state_dict)
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
state_dict['logit_scale'] = state_dict['text.logit_scale']
del state_dict['text.logit_scale']
# resize_clip_pos_embed for CLIP and open CLIP
if 'visual.positional_embedding' in state_dict:
resize_clip_pos_embed(state_dict, model)
# specified to eva_vit_model
elif 'visual.pos_embed' in state_dict:
resize_evaclip_pos_embed(state_dict, model)
# resize_clip_pos_embed(state_dict, model)
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
return incompatible_keys
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
for k in list(state_dict.keys()):
if not k.startswith('visual.'):
del state_dict[k]
for k in list(state_dict.keys()):
if k.startswith('visual.'):
new_k = k[7:]
state_dict[new_k] = state_dict[k]
del state_dict[k]
return state_dict
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
for k in list(state_dict.keys()):
if k.startswith('visual.'):
del state_dict[k]
return state_dict
def get_pretrained_tag(pretrained_model):
pretrained_model = pretrained_model.lower()
if "laion" in pretrained_model or "open_clip" in pretrained_model:
return "open_clip"
elif "openai" in pretrained_model:
return "clip"
elif "eva" in pretrained_model and "clip" in pretrained_model:
return "eva_clip"
else:
return "other"
def load_pretrained_checkpoint(
model,
visual_checkpoint_path,
text_checkpoint_path,
strict=True,
visual_model=None,
text_model=None,
model_key="model|module|state_dict",
skip_list=[]):
visual_tag = get_pretrained_tag(visual_model)
text_tag = get_pretrained_tag(text_model)
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
visual_incompatible_keys, text_incompatible_keys = None, None
if visual_checkpoint_path:
if visual_tag == "eva_clip" or visual_tag == "open_clip":
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
elif visual_tag == "clip":
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
else:
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
# resize_clip_pos_embed for CLIP and open CLIP
if 'positional_embedding' in visual_state_dict:
resize_visual_pos_embed(visual_state_dict, model)
# specified to EVA model
elif 'pos_embed' in visual_state_dict:
resize_eva_pos_embed(visual_state_dict, model)
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
if text_checkpoint_path:
if text_tag == "eva_clip" or text_tag == "open_clip":
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
elif text_tag == "clip":
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
else:
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
return visual_incompatible_keys, text_incompatible_keys
def create_model(
model_name: str,
pretrained: Optional[str] = None,
precision: str = 'fp32',
device: Union[str, torch.device] = 'cpu',
jit: bool = False,
force_quick_gelu: bool = False,
force_custom_clip: bool = False,
force_patch_dropout: Optional[float] = None,
pretrained_image: str = '',
pretrained_text: str = '',
pretrained_hf: bool = True,
pretrained_visual_model: str = None,
pretrained_text_model: str = None,
cache_dir: Optional[str] = None,
skip_list: list = [],
):
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
if isinstance(device, str):
device = torch.device(device)
if pretrained and pretrained.lower() == 'openai':
logging.info(f'Loading pretrained {model_name} from OpenAI.')
model = load_openai_model(
model_name,
precision=precision,
device=device,
jit=jit,
cache_dir=cache_dir,
)
else:
model_cfg = get_model_config(model_name)
if model_cfg is not None:
logging.info(f'Loaded {model_name} model config.')
else:
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
raise RuntimeError(f'Model config for {model_name} not found.')
if 'rope' in model_cfg.get('vision_cfg', {}):
if model_cfg['vision_cfg']['rope']:
os.environ['RoPE'] = "1"
else:
os.environ['RoPE'] = "0"
if force_quick_gelu:
# override for use of QuickGELU on non-OpenAI transformer models
model_cfg["quick_gelu"] = True
if force_patch_dropout is not None:
# override the default patch dropout value
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
cast_dtype = get_cast_dtype(precision)
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
if custom_clip:
if 'hf_model_name' in model_cfg.get('text_cfg', {}):
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
else:
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
pretrained_cfg = {}
if pretrained:
checkpoint_path = ''
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
if pretrained_cfg:
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
elif os.path.exists(pretrained):
checkpoint_path = pretrained
if checkpoint_path:
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
load_checkpoint(model,
checkpoint_path,
model_key="model|module|state_dict",
strict=False
)
else:
error_str = (
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
logging.warning(error_str)
raise RuntimeError(error_str)
else:
visual_checkpoint_path = ''
text_checkpoint_path = ''
if pretrained_image:
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
# pretrained weight loading for timm models set via vision_cfg
model_cfg['vision_cfg']['timm_model_pretrained'] = True
elif pretrained_image_cfg:
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
elif os.path.exists(pretrained_image):
visual_checkpoint_path = pretrained_image
else:
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
if pretrained_text:
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
if pretrained_image_cfg:
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
elif os.path.exists(pretrained_text):
text_checkpoint_path = pretrained_text
else:
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
if visual_checkpoint_path:
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
if text_checkpoint_path:
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
if visual_checkpoint_path or text_checkpoint_path:
load_pretrained_checkpoint(
model,
visual_checkpoint_path,
text_checkpoint_path,
strict=False,
visual_model=pretrained_visual_model,
text_model=pretrained_text_model,
model_key="model|module|state_dict",
skip_list=skip_list
)
if "fp16" in precision or "bf16" in precision:
logging.info(f'convert precision to {precision}')
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
model.to(device=device)
# set image / mean metadata from pretrained_cfg if available, or use default
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
if jit:
model = torch.jit.script(model)
return model
def create_model_and_transforms(
model_name: str,
pretrained: Optional[str] = None,
precision: str = 'fp32',
device: Union[str, torch.device] = 'cpu',
jit: bool = False,
force_quick_gelu: bool = False,
force_custom_clip: bool = False,
force_patch_dropout: Optional[float] = None,
pretrained_image: str = '',
pretrained_text: str = '',
pretrained_hf: bool = True,
pretrained_visual_model: str = None,
pretrained_text_model: str = None,
image_mean: Optional[Tuple[float, ...]] = None,
image_std: Optional[Tuple[float, ...]] = None,
cache_dir: Optional[str] = None,
skip_list: list = [],
):
model = create_model(
model_name,
pretrained,
precision=precision,
device=device,
jit=jit,
force_quick_gelu=force_quick_gelu,
force_custom_clip=force_custom_clip,
force_patch_dropout=force_patch_dropout,
pretrained_image=pretrained_image,
pretrained_text=pretrained_text,
pretrained_hf=pretrained_hf,
pretrained_visual_model=pretrained_visual_model,
pretrained_text_model=pretrained_text_model,
cache_dir=cache_dir,
skip_list=skip_list,
)
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
image_std = image_std or getattr(model.visual, 'image_std', None)
preprocess_train = image_transform(
model.visual.image_size,
is_train=True,
mean=image_mean,
std=image_std
)
preprocess_val = image_transform(
model.visual.image_size,
is_train=False,
mean=image_mean,
std=image_std
)
return model, preprocess_train, preprocess_val
def create_transforms(
model_name: str,
pretrained: Optional[str] = None,
precision: str = 'fp32',
device: Union[str, torch.device] = 'cpu',
jit: bool = False,
force_quick_gelu: bool = False,
force_custom_clip: bool = False,
force_patch_dropout: Optional[float] = None,
pretrained_image: str = '',
pretrained_text: str = '',
pretrained_hf: bool = True,
pretrained_visual_model: str = None,
pretrained_text_model: str = None,
image_mean: Optional[Tuple[float, ...]] = None,
image_std: Optional[Tuple[float, ...]] = None,
cache_dir: Optional[str] = None,
skip_list: list = [],
):
model = create_model(
model_name,
pretrained,
precision=precision,
device=device,
jit=jit,
force_quick_gelu=force_quick_gelu,
force_custom_clip=force_custom_clip,
force_patch_dropout=force_patch_dropout,
pretrained_image=pretrained_image,
pretrained_text=pretrained_text,
pretrained_hf=pretrained_hf,
pretrained_visual_model=pretrained_visual_model,
pretrained_text_model=pretrained_text_model,
cache_dir=cache_dir,
skip_list=skip_list,
)
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
image_std = image_std or getattr(model.visual, 'image_std', None)
preprocess_train = image_transform(
model.visual.image_size,
is_train=True,
mean=image_mean,
std=image_std
)
preprocess_val = image_transform(
model.visual.image_size,
is_train=False,
mean=image_mean,
std=image_std
)
del model
return preprocess_train, preprocess_val
def create_model_from_pretrained(
model_name: str,
pretrained: str,
precision: str = 'fp32',
device: Union[str, torch.device] = 'cpu',
jit: bool = False,
force_quick_gelu: bool = False,
force_custom_clip: bool = False,
force_patch_dropout: Optional[float] = None,
return_transform: bool = True,
image_mean: Optional[Tuple[float, ...]] = None,
image_std: Optional[Tuple[float, ...]] = None,
cache_dir: Optional[str] = None,
is_frozen: bool = False,
):
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
raise RuntimeError(
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
f' Use open_clip.list_pretrained() to find one.')
model = create_model(
model_name,
pretrained,
precision=precision,
device=device,
jit=jit,
force_quick_gelu=force_quick_gelu,
force_custom_clip=force_custom_clip,
force_patch_dropout=force_patch_dropout,
cache_dir=cache_dir,
)
if is_frozen:
for param in model.parameters():
param.requires_grad = False
if not return_transform:
return model
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
image_std = image_std or getattr(model.visual, 'image_std', None)
preprocess = image_transform(
model.visual.image_size,
is_train=False,
mean=image_mean,
std=image_std
)
return model, preprocess
|