yash
commited on
Commit
•
1c61c14
1
Parent(s):
ee84362
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
4 |
+
from diffusers import DDIMScheduler,EulerDiscreteScheduler,EulerAncestralDiscreteScheduler,UniPCMultistepScheduler
|
5 |
+
from diffusers import KDPM2DiscreteScheduler,KDPM2AncestralDiscreteScheduler,PNDMScheduler
|
6 |
+
from diffusers import DPMSolverMultistepScheduler
|
7 |
+
import random
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def set_pipeline(model_id_repo,scheduler):
|
13 |
+
|
14 |
+
model_ids_dict = {
|
15 |
+
"dreamshaper": "Lykon/DreamShaper",
|
16 |
+
"deliberate": "soren127/Deliberate",
|
17 |
+
"runwayml": "runwayml/stable-diffusion-v1-5",
|
18 |
+
"Realistic_Vision_V5_1_noVAE":"SG161222/Realistic_Vision_V5.1_noVAE"
|
19 |
+
}
|
20 |
+
model_id = model_id_repo
|
21 |
+
model_repo = model_ids_dict.get(model_id)
|
22 |
+
print("model_repo :",model_repo)
|
23 |
+
|
24 |
+
|
25 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
26 |
+
model_repo,
|
27 |
+
# torch_dtype=torch.float16, # to run on cpu
|
28 |
+
use_safetensors=True,
|
29 |
+
).to("cpu")
|
30 |
+
|
31 |
+
# pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
32 |
+
# model_repo,
|
33 |
+
# torch_dtype=torch.float16, # to run on cpu
|
34 |
+
# use_safetensors=True,
|
35 |
+
# ).to("cuda")
|
36 |
+
|
37 |
+
|
38 |
+
scheduler_classes = {
|
39 |
+
"DDIM": DDIMScheduler,
|
40 |
+
"Euler": EulerDiscreteScheduler,
|
41 |
+
"Euler a": EulerAncestralDiscreteScheduler,
|
42 |
+
"UniPC": UniPCMultistepScheduler,
|
43 |
+
"DPM2 Karras": KDPM2DiscreteScheduler,
|
44 |
+
"DPM2 a Karras": KDPM2AncestralDiscreteScheduler,
|
45 |
+
"PNDM": PNDMScheduler,
|
46 |
+
"DPM++ 2M Karras": DPMSolverMultistepScheduler,
|
47 |
+
"DPM++ 2M SDE Karras": DPMSolverMultistepScheduler,
|
48 |
+
}
|
49 |
+
|
50 |
+
sampler_name = scheduler # Example sampler name, replace with the actual value
|
51 |
+
scheduler_class = scheduler_classes.get(sampler_name)
|
52 |
+
|
53 |
+
if scheduler_class is not None:
|
54 |
+
print("sampler_name:",sampler_name)
|
55 |
+
pipe.scheduler = scheduler_class.from_config(pipe.scheduler.config)
|
56 |
+
else:
|
57 |
+
pass
|
58 |
+
|
59 |
+
return pipe
|
60 |
+
|
61 |
+
|
62 |
+
def img_args(
|
63 |
+
prompt,
|
64 |
+
negative_prompt,
|
65 |
+
init_img,
|
66 |
+
model_id_repo = "Realistic_Vision_V5_1_noVAE",
|
67 |
+
scheduler= "Euler a",
|
68 |
+
height=896,
|
69 |
+
width=896,
|
70 |
+
num_inference_steps = 30,
|
71 |
+
guidance_scale = 7.5,
|
72 |
+
num_images_per_prompt = 1,
|
73 |
+
seed = 0,
|
74 |
+
strength = 0.5,
|
75 |
+
):
|
76 |
+
|
77 |
+
pipe = set_pipeline(model_id_repo,scheduler)
|
78 |
+
|
79 |
+
if seed == 0:
|
80 |
+
seed = random.randint(0,25647981548564)
|
81 |
+
print(f"random seed :{seed}")
|
82 |
+
generator = torch.manual_seed(seed)
|
83 |
+
else:
|
84 |
+
generator = torch.manual_seed(seed)
|
85 |
+
print(f"manual seed :{seed}")
|
86 |
+
|
87 |
+
init_img = init_img.resize((width,height))
|
88 |
+
print(init_img.size)
|
89 |
+
image = pipe(
|
90 |
+
image=init_img,
|
91 |
+
prompt=prompt,
|
92 |
+
negative_prompt = negative_prompt,
|
93 |
+
height = height,
|
94 |
+
width = width,
|
95 |
+
num_inference_steps = num_inference_steps,
|
96 |
+
guidance_scale = guidance_scale,
|
97 |
+
num_images_per_prompt = num_images_per_prompt, # default 1
|
98 |
+
generator = generator,
|
99 |
+
strength=strength
|
100 |
+
).images
|
101 |
+
return image
|
102 |
+
|
103 |
+
|
104 |
+
block = gr.Blocks().queue()
|
105 |
+
block.title = "Inpaint Anything"
|
106 |
+
with block as image_gen:
|
107 |
+
with gr.Column():
|
108 |
+
with gr.Row():
|
109 |
+
gr.Markdown("## Image Generation")
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
# with gr.Row():
|
113 |
+
input_img = gr.Image(type="pil",label="Output")
|
114 |
+
prompt = gr.Textbox(placeholder="what you want to generate",label="Positive Prompt")
|
115 |
+
negative_prompt = gr.Textbox(placeholder="what you don't want to generate",label="Negative prompt")
|
116 |
+
run_btn = gr.Button("image generation", elem_id="select_btn", variant="primary")
|
117 |
+
with gr.Accordion(label="Advance Options",open=False):
|
118 |
+
model_selection = gr.Dropdown(choices=["dreamshaper","deliberate","runwayml","Realistic_Vision_V5_1_noVAE"],value="Realistic_Vision_V5_1_noVAE",label="Models")
|
119 |
+
schduler_selection = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM","DPM++ 2M Karras","DPM++ 2M SDE Karras"],value="Euler a",label="Scheduler")
|
120 |
+
strength_slider = gr.Slider(label="strength", minimum=0, maximum=1, value=0.8, step=0.05)
|
121 |
+
guidance_scale_slider = gr.Slider(label="guidance_scale", minimum=0, maximum=15, value=7.5, step=0.5)
|
122 |
+
num_images_per_prompt_slider = gr.Slider(label="num_images_per_prompt", minimum=0, maximum=5, value=1, step=1)
|
123 |
+
width_slider = gr.Slider(label="width", minimum=0, maximum=2048, value=896, step=1)
|
124 |
+
height_slider = gr.Slider(label="height", minimum=0, maximum=2048, value=896, step=1)
|
125 |
+
num_inference_steps_slider = gr.Slider(label="num_inference_steps", minimum=0, maximum=150, value=30, step=1)
|
126 |
+
seed_slider = gr.Slider(label="Seed Slider", minimum=0, maximum=256479815, value=0, step=1)
|
127 |
+
with gr.Column():
|
128 |
+
out_img = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
|
129 |
+
|
130 |
+
|
131 |
+
run_btn.click(fn=img_args,inputs=[prompt,negative_prompt,input_img,model_selection,schduler_selection,height_slider,width_slider,num_inference_steps_slider,guidance_scale_slider,num_images_per_prompt_slider,seed_slider,strength_slider],outputs=[out_img])
|
132 |
+
image_gen.launch()
|