sanditheta-dsw / app.py
yasirabd's picture
init app
7928fb6
import gradio
import numpy as np
import pandas as pd
import re
import fasttext
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id="facebook/fasttext-id-vectors", filename="model.bin")
model = fasttext.load_model(model_path)
new_catalog = pd.read_csv('new_catalog.csv')
new_prodcatalog_vec = np.load('product_catalog_vec.npy')
def preprocess(text):
# remove units
regex_f = r'(\d+[.]{0,1}\d*\s*(kg|KG|Kg|ml|ML|Ml|mL|mil|ltr|LTR|liter|lt|Lt|LT|L|l|kilograms|%|gram|Gram|grm|GR|Gr|gr|g|G|wp|Wp|WP|METER|sp|Amper|Ahm|A|Btr|btr|ons|kapsul|cm|inc|cc|SL|sl))'
text = re.sub(regex_f, "", text)
# replace extra characters
text = text.replace('@', ' ')
text = text.replace('.', ' ')
text = text.replace('-', ' ')
text = text.replace('(', ' ')
text = text.replace(')', ' ')
text = text.strip()
# lowercase
text = text.lower()
return text
def extract_features(text):
return model.get_sentence_vector(text)
def cosine_similarity(v1, v2):
return np.dot(v1,v2) / (np.linalg.norm(v1)*np.linalg.norm(v2))
def get_most_similar(target, reference, n=5):
score = []
for r in reference:
if np.count_nonzero(r) == 0: # untuk menghindari score nan
score.append(0.)
else:
score.append(cosine_similarity(target, r))
# ranking descending
idx = np.array(score).argsort()[::-1][:n]
top_score = np.take(score, idx)
return idx, top_score
def predict_catalog(text):
text = preprocess(text)
X = extract_features(text)
idx, top_score = get_most_similar(X, new_prodcatalog_vec)
catalog = np.take(new_catalog['Product SKU'].values, idx)[0]
return catalog
demo = gradio.Interface(
fn=predict_catalog,
inputs=gradio.Textbox(placeholder="Enter a product name here..."),
outputs="label",
examples=[["NPK Kujang 30.6.8 @ 25 Kg"]])
demo.launch(share=True)