File size: 1,359 Bytes
fccd3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces

model_name = "MBZUAI-Paris/Atlas-Chat-27B"
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
    load_in_4bit=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)


@spaces.GPU
def chat(input_text, history=[]):
    # Tokenize the input and generate response
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=150)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Update the conversation history
    history.append((input_text, response))
    return history, history


iface = gr.Interface(
    fn=chat,
    inputs=[
        gr.inputs.Textbox(label="ุฃุฏุฎู„ ุฑุณุงู„ุชูƒ ู‡ู†ุง"), 
        "state"
    ],
    outputs=[
        gr.outputs.Chatbot(label="ุงู„ู…ุญุงุฏุซุฉ"),  
        "state"
    ],
    live=True,
    title="ุฏุฑุฏุดุฉ ุฃุทู„ุณ",
    description="ุชุทุจูŠู‚ ุฏุฑุฏุดุฉ ูŠุนู…ู„ ุจู†ู…ูˆุฐุฌ ุฃุทู„ุณ-ุดุงุช ู„ุชูˆููŠุฑ ุชูุงุนู„ ุฐูƒูŠ ูˆุณู„ุณ",
    theme="huggingface",
    examples=[
        ["ู…ุฑุญุจุงู‹! ูƒูŠู ูŠู…ูƒู†ู†ูŠ ู…ุณุงุนุฏุชูƒ ุงู„ูŠูˆู…ุŸ"],
        ["ู…ุง ู‡ูŠ ุฃุฎุจุงุฑ ุงู„ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ุญุฏูŠุซุฉุŸ"]
    ]
)

# Launch the application
iface.launch()