File size: 1,843 Bytes
fccd3f3
 
 
 
 
9ec6197
a39566b
fccd3f3
 
a39566b
fccd3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec6197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fccd3f3
9ec6197
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces

model_name = "MBZUAI-Paris/Atlas-Chat-9B"
dtype = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
     torch_dtype=dtype,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)


@spaces.GPU
def chat(input_text, history=[]):
    # Tokenize the input and generate response
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=150)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Update the conversation history
    history.append((input_text, response))
    return history, history


with gr.Blocks() as app:
    gr.Markdown("<h1 style='text-align: center;'>Ψ―Ψ±Ψ―Ψ΄Ψ© Ψ£Ψ·Ω„Ψ³</h1>")
    chatbot = gr.Chatbot(label="Ψ§Ω„Ω…Ψ­Ψ§Ψ―Ψ«Ψ©")
    state = gr.State([])

    with gr.Row():
        txt = gr.Textbox(show_label=False, placeholder="Ψ§ΩƒΨͺΨ¨ Ψ±Ψ³Ψ§Ω„ΨͺΩƒ Ω‡Ω†Ψ§...").style(container=False)
        send_button = gr.Button("Ψ₯Ψ±Ψ³Ψ§Ω„")

    # Define the button click event
    def user_input(input_text, history):
        return "", history + [[input_text, None]]

    def bot_response(history):
        user_message = history[-1][0]
        inputs = tokenizer(user_message, return_tensors="pt").to(model.device)
        outputs = model.generate(**inputs, max_new_tokens=150)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        history[-1][1] = response
        return history

    # Link functions to button clicks
    txt.submit(user_input, [txt, state], [txt, state]).then(
        bot_response, state, chatbot
    )
    send_button.click(user_input, [txt, state], [txt, state]).then(
        bot_response, state, chatbot
    )

app.launch()