File size: 1,589 Bytes
fccd3f3
 
 
bb262ae
fccd3f3
9ec6197
a39566b
fccd3f3
 
a39566b
fccd3f3
 
 
 
 
bb262ae
fccd3f3
 
 
226b6dc
fccd3f3
 
 
 
3e726ee
fccd3f3
 
9ec6197
3e726ee
9ec6197
 
 
 
6de18d9
9ec6197
 
6de18d9
3e726ee
 
 
 
 
 
 
 
 
 
 
1291cc5
3e726ee
fccd3f3
9ec6197
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
#import spaces

model_name = "MBZUAI-Paris/Atlas-Chat-9B"
dtype = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
     torch_dtype=dtype,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)


#@spaces.GPU
def chat(input_text, history=[]):
    # Tokenize the input and generate response
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=1024)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Update the conversation history
    history.append((input_text, response))
    return history, history,"" 


with gr.Blocks() as app:
    gr.Markdown("<h1 style='text-align: center;'>دردشة أطلس</h1>")
    chatbot = gr.Chatbot(label="المحادثة")
    state = gr.State([])

    with gr.Row():
        txt = gr.Textbox(show_label=False, placeholder="اكتب رسالتك هنا...")
        send_button = gr.Button("إرسال")

    # Link the chat function to both text submission and button click
    txt.submit(chat, [txt, state], [chatbot, state,txt])
    send_button.click(chat, [txt, state], [chatbot, state,txt])

    examples = [
        ["ما هي أحدث أخبار الذكاء الاصطناعي؟"],
        ["كيف يمكنني البدء في تعلم البرمجة؟"]
    ]

    gr.Examples(
        examples=examples,
        inputs=txt,
        label="أمثلة على الأسئلة"
    )

app.launch()