Spaces:
Sleeping
Sleeping
File size: 1,589 Bytes
fccd3f3 bb262ae fccd3f3 9ec6197 a39566b fccd3f3 a39566b fccd3f3 bb262ae fccd3f3 226b6dc fccd3f3 3e726ee fccd3f3 9ec6197 3e726ee 9ec6197 6de18d9 9ec6197 6de18d9 3e726ee 1291cc5 3e726ee fccd3f3 9ec6197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
#import spaces
model_name = "MBZUAI-Paris/Atlas-Chat-9B"
dtype = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
#@spaces.GPU
def chat(input_text, history=[]):
# Tokenize the input and generate response
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1024)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Update the conversation history
history.append((input_text, response))
return history, history,""
with gr.Blocks() as app:
gr.Markdown("<h1 style='text-align: center;'>دردشة أطلس</h1>")
chatbot = gr.Chatbot(label="المحادثة")
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="اكتب رسالتك هنا...")
send_button = gr.Button("إرسال")
# Link the chat function to both text submission and button click
txt.submit(chat, [txt, state], [chatbot, state,txt])
send_button.click(chat, [txt, state], [chatbot, state,txt])
examples = [
["ما هي أحدث أخبار الذكاء الاصطناعي؟"],
["كيف يمكنني البدء في تعلم البرمجة؟"]
]
gr.Examples(
examples=examples,
inputs=txt,
label="أمثلة على الأسئلة"
)
app.launch()
|