Spaces:
Running
Running
Update career_data.py
Browse files- career_data.py +14 -33
career_data.py
CHANGED
@@ -1,50 +1,31 @@
|
|
1 |
-
|
|
|
2 |
import torch
|
3 |
|
4 |
-
# Load
|
5 |
-
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
model = AutoModel.from_pretrained(model_name)
|
8 |
|
9 |
-
#
|
10 |
-
career_options
|
11 |
-
|
12 |
-
"skills": "programming, problem-solving",
|
13 |
-
"interests": "technology, innovation"
|
14 |
-
},
|
15 |
-
"Graphic Designer": {
|
16 |
-
"skills": "design, creativity",
|
17 |
-
"interests": "art, visual communication"
|
18 |
-
},
|
19 |
-
"Project Manager": {
|
20 |
-
"skills": "management, organization",
|
21 |
-
"interests": "leadership, strategy"
|
22 |
-
},
|
23 |
-
# Add more careers as needed
|
24 |
-
}
|
25 |
-
|
26 |
-
# Generate embeddings for career options
|
27 |
-
def get_embedding(text):
|
28 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
29 |
-
with torch.no_grad():
|
30 |
-
embedding = model(**inputs).last_hidden_state.mean(dim=1).squeeze()
|
31 |
-
return embedding
|
32 |
|
|
|
33 |
career_embeddings = {}
|
34 |
for career, attributes in career_options.items():
|
35 |
combined_text = attributes["skills"] + ", " + attributes["interests"]
|
36 |
-
career_embeddings[career] =
|
37 |
|
38 |
-
# Function to
|
39 |
def get_career_recommendations(skills: str, interests: str):
|
40 |
user_input = skills + ", " + interests
|
41 |
-
user_embedding =
|
42 |
-
|
43 |
recommendations = []
|
44 |
for career, career_embedding in career_embeddings.items():
|
45 |
-
similarity = torch.cosine_similarity(user_embedding, career_embedding, dim=0).item()
|
46 |
recommendations.append((career, similarity))
|
47 |
|
|
|
48 |
recommendations.sort(key=lambda x: x[1], reverse=True)
|
49 |
|
50 |
return [f"{career} (Similarity: {similarity:.2f})" for career, similarity in recommendations[:5]]
|
|
|
1 |
+
import json
|
2 |
+
from model2vec import StaticModel
|
3 |
import torch
|
4 |
|
5 |
+
# Load the Model2Vec pretrained model
|
6 |
+
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
|
7 |
|
8 |
+
# Load career options from JSON file
|
9 |
+
with open("career_options.json", "r") as file:
|
10 |
+
career_options = json.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Precompute embeddings for career options
|
13 |
career_embeddings = {}
|
14 |
for career, attributes in career_options.items():
|
15 |
combined_text = attributes["skills"] + ", " + attributes["interests"]
|
16 |
+
career_embeddings[career] = model.encode([combined_text])[0]
|
17 |
|
18 |
+
# Function to generate career recommendations
|
19 |
def get_career_recommendations(skills: str, interests: str):
|
20 |
user_input = skills + ", " + interests
|
21 |
+
user_embedding = model.encode([user_input])[0]
|
22 |
+
|
23 |
recommendations = []
|
24 |
for career, career_embedding in career_embeddings.items():
|
25 |
+
similarity = torch.cosine_similarity(torch.tensor(user_embedding), torch.tensor(career_embedding), dim=0).item()
|
26 |
recommendations.append((career, similarity))
|
27 |
|
28 |
+
# Sort by similarity score
|
29 |
recommendations.sort(key=lambda x: x[1], reverse=True)
|
30 |
|
31 |
return [f"{career} (Similarity: {similarity:.2f})" for career, similarity in recommendations[:5]]
|