Spaces:
Runtime error
Runtime error
File size: 8,181 Bytes
4d6b877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# python3.7
"""Contains the base class for generator."""
import os
import sys
import logging
import numpy as np
import torch
from . import model_settings
__all__ = ['BaseGenerator']
def get_temp_logger(logger_name='logger'):
"""Gets a temporary logger.
This logger will print all levels of messages onto the screen.
Args:
logger_name: Name of the logger.
Returns:
A `logging.Logger`.
Raises:
ValueError: If the input `logger_name` is empty.
"""
if not logger_name:
raise ValueError(f'Input `logger_name` should not be empty!')
logger = logging.getLogger(logger_name)
if not logger.hasHandlers():
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s")
sh = logging.StreamHandler(stream=sys.stdout)
sh.setLevel(logging.DEBUG)
sh.setFormatter(formatter)
logger.addHandler(sh)
return logger
class BaseGenerator(object):
"""Base class for generator used in GAN variants.
NOTE: The model should be defined with pytorch, and only used for inference.
"""
def __init__(self, model_name, logger=None):
"""Initializes with specific settings.
The model should be registered in `model_settings.py` with proper settings
first. Among them, some attributes are necessary, including:
(1) gan_type: Type of the GAN model.
(2) latent_space_dim: Dimension of the latent space. Should be a tuple.
(3) resolution: Resolution of the synthesis.
(4) min_val: Minimum value of the raw output. (default -1.0)
(5) max_val: Maximum value of the raw output. (default 1.0)
(6) channel_order: Channel order of the output image. (default: `RGB`)
Args:
model_name: Name with which the model is registered.
logger: Logger for recording log messages. If set as `None`, a default
logger, which prints messages from all levels to screen, will be
created. (default: None)
Raises:
AttributeError: If some necessary attributes are missing.
"""
self.model_name = model_name
for key, val in model_settings.MODEL_POOL[model_name].items():
setattr(self, key, val)
self.use_cuda = model_settings.USE_CUDA
self.batch_size = model_settings.MAX_IMAGES_ON_DEVICE
self.logger = logger or get_temp_logger(model_name + '_generator')
self.model = None
self.run_device = 'cuda' if self.use_cuda else 'cpu'
self.cpu_device = 'cpu'
# Check necessary settings.
self.check_attr('gan_type')
self.check_attr('latent_space_dim')
self.check_attr('resolution')
self.min_val = getattr(self, 'min_val', -1.0)
self.max_val = getattr(self, 'max_val', 1.0)
self.output_channels = getattr(self, 'output_channels', 3)
self.channel_order = getattr(self, 'channel_order', 'RGB').upper()
assert self.channel_order in ['RGB', 'BGR']
# Build model and load pre-trained weights.
self.build()
if os.path.isfile(getattr(self, 'model_path', '')):
self.load()
elif os.path.isfile(getattr(self, 'tf_model_path', '')):
self.convert_tf_model()
else:
self.logger.warning(f'No pre-trained model will be loaded!')
# Change to inference mode and GPU mode if needed.
assert self.model
self.model.eval().to(self.run_device)
def check_attr(self, attr_name):
"""Checks the existence of a particular attribute.
Args:
attr_name: Name of the attribute to check.
Raises:
AttributeError: If the target attribute is missing.
"""
if not hasattr(self, attr_name):
raise AttributeError(
f'`{attr_name}` is missing for model `{self.model_name}`!')
def build(self):
"""Builds the graph."""
raise NotImplementedError(f'Should be implemented in derived class!')
def load(self):
"""Loads pre-trained weights."""
raise NotImplementedError(f'Should be implemented in derived class!')
def convert_tf_model(self, test_num=10):
"""Converts models weights from tensorflow version.
Args:
test_num: Number of images to generate for testing whether the conversion
is done correctly. `0` means skipping the test. (default 10)
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def sample(self, num):
"""Samples latent codes randomly.
Args:
num: Number of latent codes to sample. Should be positive.
Returns:
A `numpy.ndarray` as sampled latend codes.
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def preprocess(self, latent_codes):
"""Preprocesses the input latent code if needed.
Args:
latent_codes: The input latent codes for preprocessing.
Returns:
The preprocessed latent codes which can be used as final input for the
generator.
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def easy_sample(self, num):
"""Wraps functions `sample()` and `preprocess()` together."""
return self.preprocess(self.sample(num))
def synthesize(self, latent_codes):
"""Synthesizes images with given latent codes.
NOTE: The latent codes should have already been preprocessed.
Args:
latent_codes: Input latent codes for image synthesis.
Returns:
A dictionary whose values are raw outputs from the generator.
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def get_value(self, tensor):
"""Gets value of a `torch.Tensor`.
Args:
tensor: The input tensor to get value from.
Returns:
A `numpy.ndarray`.
Raises:
ValueError: If the tensor is with neither `torch.Tensor` type or
`numpy.ndarray` type.
"""
if isinstance(tensor, np.ndarray):
return tensor
if isinstance(tensor, torch.Tensor):
return tensor.to(self.cpu_device).detach().numpy()
raise ValueError(f'Unsupported input type `{type(tensor)}`!')
def postprocess(self, images):
"""Postprocesses the output images if needed.
This function assumes the input numpy array is with shape [batch_size,
channel, height, width]. Here, `channel = 3` for color image and
`channel = 1` for grayscale image. The return images are with shape
[batch_size, height, width, channel]. NOTE: The channel order of output
image will always be `RGB`.
Args:
images: The raw output from the generator.
Returns:
The postprocessed images with dtype `numpy.uint8` with range [0, 255].
Raises:
ValueError: If the input `images` are not with type `numpy.ndarray` or not
with shape [batch_size, channel, height, width].
"""
if not isinstance(images, np.ndarray):
raise ValueError(f'Images should be with type `numpy.ndarray`!')
if ('stylegan3' not in self.model_name) and ('stylegan2' not in self.model_name):
images_shape = images.shape
if len(images_shape) != 4 or images_shape[1] not in [1, 3]:
raise ValueError(f'Input should be with shape [batch_size, channel, '
f'height, width], where channel equals to 1 or 3. '
f'But {images_shape} is received!')
images = (images - self.min_val) * 255 / (self.max_val - self.min_val)
images = np.clip(images + 0.5, 0, 255).astype(np.uint8)
images = images.transpose(0, 2, 3, 1)
if self.channel_order == 'BGR':
images = images[:, :, :, ::-1]
return images
def easy_synthesize(self, latent_codes, **kwargs):
"""Wraps functions `synthesize()` and `postprocess()` together."""
outputs = self.synthesize(latent_codes, **kwargs)
if 'image' in outputs:
outputs['image'] = self.postprocess(outputs['image'])
return outputs
def get_batch_inputs(self, latent_codes):
"""Gets batch inputs from a collection of latent codes.
This function will yield at most `self.batch_size` latent_codes at a time.
Args:
latent_codes: The input latent codes for generation. First dimension
should be the total number.
"""
total_num = latent_codes.shape[0]
for i in range(0, total_num, self.batch_size):
yield latent_codes[i:i + self.batch_size]
|