File size: 35,959 Bytes
4d6b877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# python3.7
"""Contains the implementation of generator described in StyleGAN.

Different from the official tensorflow model in folder `stylegan_tf_official`,
this is a simple pytorch version which only contains the generator part. This
class is specially used for inference.

For more details, please check the original paper:
https://arxiv.org/pdf/1812.04948.pdf
"""

from collections import OrderedDict
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['StyleGANGeneratorModel']

# Defines a dictionary, which maps the target resolution of the final generated
# image to numbers of filters used in each convolutional layer in sequence.
_RESOLUTIONS_TO_CHANNELS = {
    8: [512, 512, 512],
    16: [512, 512, 512, 512],
    32: [512, 512, 512, 512, 512],
    64: [512, 512, 512, 512, 512, 256],
    128: [512, 512, 512, 512, 512, 256, 128],
    256: [512, 512, 512, 512, 512, 256, 128, 64],
    512: [512, 512, 512, 512, 512, 256, 128, 64, 32],
    1024: [512, 512, 512, 512, 512, 256, 128, 64, 32, 16],
}

# pylint: disable=line-too-long
# Variable mapping from pytorch model to official tensorflow model.
_STYLEGAN_PTH_VARS_TO_TF_VARS = {
    # Statistic information of disentangled latent feature, w.
    'truncation.w_avg':'dlatent_avg',  # [512]

    # Noises.
    'synthesis.layer0.epilogue.apply_noise.noise': 'noise0',  # [1, 1, 4, 4]
    'synthesis.layer1.epilogue.apply_noise.noise': 'noise1',  # [1, 1, 4, 4]
    'synthesis.layer2.epilogue.apply_noise.noise': 'noise2',  # [1, 1, 8, 8]
    'synthesis.layer3.epilogue.apply_noise.noise': 'noise3',  # [1, 1, 8, 8]
    'synthesis.layer4.epilogue.apply_noise.noise': 'noise4',  # [1, 1, 16, 16]
    'synthesis.layer5.epilogue.apply_noise.noise': 'noise5',  # [1, 1, 16, 16]
    'synthesis.layer6.epilogue.apply_noise.noise': 'noise6',  # [1, 1, 32, 32]
    'synthesis.layer7.epilogue.apply_noise.noise': 'noise7',  # [1, 1, 32, 32]
    'synthesis.layer8.epilogue.apply_noise.noise': 'noise8',  # [1, 1, 64, 64]
    'synthesis.layer9.epilogue.apply_noise.noise': 'noise9',  # [1, 1, 64, 64]
    'synthesis.layer10.epilogue.apply_noise.noise': 'noise10',  # [1, 1, 128, 128]
    'synthesis.layer11.epilogue.apply_noise.noise': 'noise11',  # [1, 1, 128, 128]
    'synthesis.layer12.epilogue.apply_noise.noise': 'noise12',  # [1, 1, 256, 256]
    'synthesis.layer13.epilogue.apply_noise.noise': 'noise13',  # [1, 1, 256, 256]
    'synthesis.layer14.epilogue.apply_noise.noise': 'noise14',  # [1, 1, 512, 512]
    'synthesis.layer15.epilogue.apply_noise.noise': 'noise15',  # [1, 1, 512, 512]
    'synthesis.layer16.epilogue.apply_noise.noise': 'noise16',  # [1, 1, 1024, 1024]
    'synthesis.layer17.epilogue.apply_noise.noise': 'noise17',  # [1, 1, 1024, 1024]

    # Mapping blocks.
    'mapping.dense0.linear.weight': 'Dense0/weight',  # [512, 512]
    'mapping.dense0.wscale.bias': 'Dense0/bias',  # [512]
    'mapping.dense1.linear.weight': 'Dense1/weight',  # [512, 512]
    'mapping.dense1.wscale.bias': 'Dense1/bias',  # [512]
    'mapping.dense2.linear.weight': 'Dense2/weight',  # [512, 512]
    'mapping.dense2.wscale.bias': 'Dense2/bias',  # [512]
    'mapping.dense3.linear.weight': 'Dense3/weight',  # [512, 512]
    'mapping.dense3.wscale.bias': 'Dense3/bias',  # [512]
    'mapping.dense4.linear.weight': 'Dense4/weight',  # [512, 512]
    'mapping.dense4.wscale.bias': 'Dense4/bias',  # [512]
    'mapping.dense5.linear.weight': 'Dense5/weight',  # [512, 512]
    'mapping.dense5.wscale.bias': 'Dense5/bias',  # [512]
    'mapping.dense6.linear.weight': 'Dense6/weight',  # [512, 512]
    'mapping.dense6.wscale.bias': 'Dense6/bias',  # [512]
    'mapping.dense7.linear.weight': 'Dense7/weight',  # [512, 512]
    'mapping.dense7.wscale.bias': 'Dense7/bias',  # [512]

    # Synthesis blocks.
    'synthesis.lod': 'lod',  # []
    'synthesis.layer0.first_layer': '4x4/Const/const',  # [1, 512, 4, 4]
    'synthesis.layer0.epilogue.apply_noise.weight': '4x4/Const/Noise/weight',  # [512]
    'synthesis.layer0.epilogue.bias': '4x4/Const/bias',  # [512]
    'synthesis.layer0.epilogue.style_mod.dense.linear.weight': '4x4/Const/StyleMod/weight',  # [1024, 512]
    'synthesis.layer0.epilogue.style_mod.dense.wscale.bias': '4x4/Const/StyleMod/bias',  # [1024]
    'synthesis.layer1.conv.weight': '4x4/Conv/weight',  # [512, 512, 3, 3]
    'synthesis.layer1.epilogue.apply_noise.weight': '4x4/Conv/Noise/weight',  # [512]
    'synthesis.layer1.epilogue.bias': '4x4/Conv/bias',  # [512]
    'synthesis.layer1.epilogue.style_mod.dense.linear.weight': '4x4/Conv/StyleMod/weight',  # [1024, 512]
    'synthesis.layer1.epilogue.style_mod.dense.wscale.bias': '4x4/Conv/StyleMod/bias',  # [1024]
    'synthesis.layer2.conv.weight': '8x8/Conv0_up/weight',  # [512, 512, 3, 3]
    'synthesis.layer2.epilogue.apply_noise.weight': '8x8/Conv0_up/Noise/weight',  # [512]
    'synthesis.layer2.epilogue.bias': '8x8/Conv0_up/bias',  # [512]
    'synthesis.layer2.epilogue.style_mod.dense.linear.weight': '8x8/Conv0_up/StyleMod/weight',  # [1024, 512]
    'synthesis.layer2.epilogue.style_mod.dense.wscale.bias': '8x8/Conv0_up/StyleMod/bias',  # [1024]
    'synthesis.layer3.conv.weight': '8x8/Conv1/weight',  # [512, 512, 3, 3]
    'synthesis.layer3.epilogue.apply_noise.weight': '8x8/Conv1/Noise/weight',  # [512]
    'synthesis.layer3.epilogue.bias': '8x8/Conv1/bias',  # [512]
    'synthesis.layer3.epilogue.style_mod.dense.linear.weight': '8x8/Conv1/StyleMod/weight',  # [1024, 512]
    'synthesis.layer3.epilogue.style_mod.dense.wscale.bias': '8x8/Conv1/StyleMod/bias',  # [1024]
    'synthesis.layer4.conv.weight': '16x16/Conv0_up/weight',  # [512, 512, 3, 3]
    'synthesis.layer4.epilogue.apply_noise.weight': '16x16/Conv0_up/Noise/weight',  # [512]
    'synthesis.layer4.epilogue.bias': '16x16/Conv0_up/bias',  # [512]
    'synthesis.layer4.epilogue.style_mod.dense.linear.weight': '16x16/Conv0_up/StyleMod/weight',  # [1024, 512]
    'synthesis.layer4.epilogue.style_mod.dense.wscale.bias': '16x16/Conv0_up/StyleMod/bias',  # [1024]
    'synthesis.layer5.conv.weight': '16x16/Conv1/weight',  # [512, 512, 3, 3]
    'synthesis.layer5.epilogue.apply_noise.weight': '16x16/Conv1/Noise/weight',  # [512]
    'synthesis.layer5.epilogue.bias': '16x16/Conv1/bias',  # [512]
    'synthesis.layer5.epilogue.style_mod.dense.linear.weight': '16x16/Conv1/StyleMod/weight',  # [1024, 512]
    'synthesis.layer5.epilogue.style_mod.dense.wscale.bias': '16x16/Conv1/StyleMod/bias',  # [1024]
    'synthesis.layer6.conv.weight': '32x32/Conv0_up/weight',  # [512, 512, 3, 3]
    'synthesis.layer6.epilogue.apply_noise.weight': '32x32/Conv0_up/Noise/weight',  # [512]
    'synthesis.layer6.epilogue.bias': '32x32/Conv0_up/bias',  # [512]
    'synthesis.layer6.epilogue.style_mod.dense.linear.weight': '32x32/Conv0_up/StyleMod/weight',  # [1024, 512]
    'synthesis.layer6.epilogue.style_mod.dense.wscale.bias': '32x32/Conv0_up/StyleMod/bias',  # [1024]
    'synthesis.layer7.conv.weight': '32x32/Conv1/weight',  # [512, 512, 3, 3]
    'synthesis.layer7.epilogue.apply_noise.weight': '32x32/Conv1/Noise/weight',  # [512]
    'synthesis.layer7.epilogue.bias': '32x32/Conv1/bias',  # [512]
    'synthesis.layer7.epilogue.style_mod.dense.linear.weight': '32x32/Conv1/StyleMod/weight',  # [1024, 512]
    'synthesis.layer7.epilogue.style_mod.dense.wscale.bias': '32x32/Conv1/StyleMod/bias',  # [1024]
    'synthesis.layer8.conv.weight': '64x64/Conv0_up/weight',  # [256, 512, 3, 3]
    'synthesis.layer8.epilogue.apply_noise.weight': '64x64/Conv0_up/Noise/weight',  # [256]
    'synthesis.layer8.epilogue.bias': '64x64/Conv0_up/bias',  # [256]
    'synthesis.layer8.epilogue.style_mod.dense.linear.weight': '64x64/Conv0_up/StyleMod/weight',  # [512, 512]
    'synthesis.layer8.epilogue.style_mod.dense.wscale.bias': '64x64/Conv0_up/StyleMod/bias',  # [512]
    'synthesis.layer9.conv.weight': '64x64/Conv1/weight',  # [256, 256, 3, 3]
    'synthesis.layer9.epilogue.apply_noise.weight': '64x64/Conv1/Noise/weight',  # [256]
    'synthesis.layer9.epilogue.bias': '64x64/Conv1/bias',  # [256]
    'synthesis.layer9.epilogue.style_mod.dense.linear.weight': '64x64/Conv1/StyleMod/weight',  # [512, 512]
    'synthesis.layer9.epilogue.style_mod.dense.wscale.bias': '64x64/Conv1/StyleMod/bias',  # [512]
    'synthesis.layer10.conv.weight': '128x128/Conv0_up/weight',  # [128, 256, 3, 3]
    'synthesis.layer10.epilogue.apply_noise.weight': '128x128/Conv0_up/Noise/weight',  # [128]
    'synthesis.layer10.epilogue.bias': '128x128/Conv0_up/bias',  # [128]
    'synthesis.layer10.epilogue.style_mod.dense.linear.weight': '128x128/Conv0_up/StyleMod/weight',  # [256, 512]
    'synthesis.layer10.epilogue.style_mod.dense.wscale.bias': '128x128/Conv0_up/StyleMod/bias',  # [256]
    'synthesis.layer11.conv.weight': '128x128/Conv1/weight',  # [128, 128, 3, 3]
    'synthesis.layer11.epilogue.apply_noise.weight': '128x128/Conv1/Noise/weight',  # [128]
    'synthesis.layer11.epilogue.bias': '128x128/Conv1/bias',  # [128]
    'synthesis.layer11.epilogue.style_mod.dense.linear.weight': '128x128/Conv1/StyleMod/weight',  # [256, 512]
    'synthesis.layer11.epilogue.style_mod.dense.wscale.bias': '128x128/Conv1/StyleMod/bias',  # [256]
    'synthesis.layer12.conv.weight': '256x256/Conv0_up/weight',  # [64, 128, 3, 3]
    'synthesis.layer12.epilogue.apply_noise.weight': '256x256/Conv0_up/Noise/weight',  # [64]
    'synthesis.layer12.epilogue.bias': '256x256/Conv0_up/bias',  # [64]
    'synthesis.layer12.epilogue.style_mod.dense.linear.weight': '256x256/Conv0_up/StyleMod/weight',  # [128, 512]
    'synthesis.layer12.epilogue.style_mod.dense.wscale.bias': '256x256/Conv0_up/StyleMod/bias',  # [128]
    'synthesis.layer13.conv.weight': '256x256/Conv1/weight',  # [64, 64, 3, 3]
    'synthesis.layer13.epilogue.apply_noise.weight': '256x256/Conv1/Noise/weight',  # [64]
    'synthesis.layer13.epilogue.bias': '256x256/Conv1/bias',  # [64]
    'synthesis.layer13.epilogue.style_mod.dense.linear.weight': '256x256/Conv1/StyleMod/weight',  # [128, 512]
    'synthesis.layer13.epilogue.style_mod.dense.wscale.bias': '256x256/Conv1/StyleMod/bias',  # [128]
    'synthesis.layer14.conv.weight': '512x512/Conv0_up/weight',  # [32, 64, 3, 3]
    'synthesis.layer14.epilogue.apply_noise.weight': '512x512/Conv0_up/Noise/weight',  # [32]
    'synthesis.layer14.epilogue.bias': '512x512/Conv0_up/bias',  # [32]
    'synthesis.layer14.epilogue.style_mod.dense.linear.weight': '512x512/Conv0_up/StyleMod/weight',  # [64, 512]
    'synthesis.layer14.epilogue.style_mod.dense.wscale.bias': '512x512/Conv0_up/StyleMod/bias',  # [64]
    'synthesis.layer15.conv.weight': '512x512/Conv1/weight',  # [32, 32, 3, 3]
    'synthesis.layer15.epilogue.apply_noise.weight': '512x512/Conv1/Noise/weight',  # [32]
    'synthesis.layer15.epilogue.bias': '512x512/Conv1/bias',  # [32]
    'synthesis.layer15.epilogue.style_mod.dense.linear.weight': '512x512/Conv1/StyleMod/weight',  # [64, 512]
    'synthesis.layer15.epilogue.style_mod.dense.wscale.bias': '512x512/Conv1/StyleMod/bias',  # [64]
    'synthesis.layer16.conv.weight': '1024x1024/Conv0_up/weight',  # [16, 32, 3, 3]
    'synthesis.layer16.epilogue.apply_noise.weight': '1024x1024/Conv0_up/Noise/weight',  # [16]
    'synthesis.layer16.epilogue.bias': '1024x1024/Conv0_up/bias',  # [16]
    'synthesis.layer16.epilogue.style_mod.dense.linear.weight': '1024x1024/Conv0_up/StyleMod/weight',  # [32, 512]
    'synthesis.layer16.epilogue.style_mod.dense.wscale.bias': '1024x1024/Conv0_up/StyleMod/bias',  # [32]
    'synthesis.layer17.conv.weight': '1024x1024/Conv1/weight',  # [16, 16, 3, 3]
    'synthesis.layer17.epilogue.apply_noise.weight': '1024x1024/Conv1/Noise/weight',  # [16]
    'synthesis.layer17.epilogue.bias': '1024x1024/Conv1/bias',  # [16]
    'synthesis.layer17.epilogue.style_mod.dense.linear.weight': '1024x1024/Conv1/StyleMod/weight',  # [32, 512]
    'synthesis.layer17.epilogue.style_mod.dense.wscale.bias': '1024x1024/Conv1/StyleMod/bias',  # [32]
    'synthesis.output0.conv.weight': 'ToRGB_lod8/weight',  # [3, 512, 1, 1]
    'synthesis.output0.bias': 'ToRGB_lod8/bias',  # [3]
    'synthesis.output1.conv.weight': 'ToRGB_lod7/weight',  # [3, 512, 1, 1]
    'synthesis.output1.bias': 'ToRGB_lod7/bias',  # [3]
    'synthesis.output2.conv.weight': 'ToRGB_lod6/weight',  # [3, 512, 1, 1]
    'synthesis.output2.bias': 'ToRGB_lod6/bias',  # [3]
    'synthesis.output3.conv.weight': 'ToRGB_lod5/weight',  # [3, 512, 1, 1]
    'synthesis.output3.bias': 'ToRGB_lod5/bias',  # [3]
    'synthesis.output4.conv.weight': 'ToRGB_lod4/weight',  # [3, 256, 1, 1]
    'synthesis.output4.bias': 'ToRGB_lod4/bias',  # [3]
    'synthesis.output5.conv.weight': 'ToRGB_lod3/weight',  # [3, 128, 1, 1]
    'synthesis.output5.bias': 'ToRGB_lod3/bias',  # [3]
    'synthesis.output6.conv.weight': 'ToRGB_lod2/weight',  # [3, 64, 1, 1]
    'synthesis.output6.bias': 'ToRGB_lod2/bias',  # [3]
    'synthesis.output7.conv.weight': 'ToRGB_lod1/weight',  # [3, 32, 1, 1]
    'synthesis.output7.bias': 'ToRGB_lod1/bias',  # [3]
    'synthesis.output8.conv.weight': 'ToRGB_lod0/weight',  # [3, 16, 1, 1]
    'synthesis.output8.bias': 'ToRGB_lod0/bias',  # [3]
}
# pylint: enable=line-too-long

# Minimal resolution for `auto` fused-scale strategy.
_AUTO_FUSED_SCALE_MIN_RES = 128


class StyleGANGeneratorModel(nn.Module):
  """Defines the generator module in StyleGAN.

  Note that the generated images are with RGB color channels.
  """

  def __init__(self,
               resolution=1024,
               w_space_dim=512,
               fused_scale='auto',
               output_channels=3,
               truncation_psi=0.7,
               truncation_layers=8,
               randomize_noise=False):
    """Initializes the generator with basic settings.

    Args:
      resolution: The resolution of the final output image. (default: 1024)
      w_space_dim: The dimension of the disentangled latent vectors, w.
        (default: 512)
      fused_scale: If set as `True`, `conv2d_transpose` is used for upscaling.
        If set as `False`, `upsample + conv2d` is used for upscaling. If set as
        `auto`, `upsample + conv2d` is used for bottom layers until resolution
        reaches 128. (default: `auto`)
      output_channels: Number of channels of output image. (default: 3)
      truncation_psi: Style strength multiplier for the truncation trick.
        `None` or `1.0` indicates no truncation. (default: 0.7)
      truncation_layers: Number of layers for which to apply the truncation
        trick. `None` indicates no truncation. (default: 8)
      randomize_noise: Whether to add random noise for each convolutional layer.
        (default: False)

    Raises:
      ValueError: If the input `resolution` is not supported.
    """
    super().__init__()
    self.resolution = resolution
    self.w_space_dim = w_space_dim
    self.fused_scale = fused_scale
    self.output_channels = output_channels
    self.truncation_psi = truncation_psi
    self.truncation_layers = truncation_layers
    self.randomize_noise = randomize_noise

    self.mapping = MappingModule(final_space_dim=self.w_space_dim)
    self.truncation = TruncationModule(resolution=self.resolution,
                                       w_space_dim=self.w_space_dim,
                                       truncation_psi=self.truncation_psi,
                                       truncation_layers=self.truncation_layers)
    self.synthesis = SynthesisModule(resolution=self.resolution,
                                     fused_scale=self.fused_scale,
                                     output_channels=self.output_channels,
                                     randomize_noise=self.randomize_noise)

    self.pth_to_tf_var_mapping = {}
    for pth_var_name, tf_var_name in _STYLEGAN_PTH_VARS_TO_TF_VARS.items():
      if 'Conv0_up' in tf_var_name:
        res = int(tf_var_name.split('x')[0])
        if ((self.fused_scale is True) or
            (self.fused_scale == 'auto' and res >= _AUTO_FUSED_SCALE_MIN_RES)):
          pth_var_name = pth_var_name.replace('conv.weight', 'weight')
      self.pth_to_tf_var_mapping[pth_var_name] = tf_var_name

  def forward(self, z):
    w = self.mapping(z)
    w = self.truncation(w)
    x = self.synthesis(w)
    return x


class MappingModule(nn.Sequential):
  """Implements the latent space mapping module used in StyleGAN.

  Basically, this module executes several dense layers in sequence.
  """

  def __init__(self,
               normalize_input=True,
               input_space_dim=512,
               hidden_space_dim=512,
               final_space_dim=512,
               num_layers=8):
    sequence = OrderedDict()

    def _add_layer(layer, name=None):
      name = name or f'dense{len(sequence) + (not normalize_input) - 1}'
      sequence[name] = layer

    if normalize_input:
      _add_layer(PixelNormLayer(), name='normalize')
    for i in range(num_layers):
      in_dim = input_space_dim if i == 0 else hidden_space_dim
      out_dim = final_space_dim if i == (num_layers - 1) else hidden_space_dim
      _add_layer(DenseBlock(in_dim, out_dim))
    super().__init__(sequence)

  def forward(self, x):
    if len(x.shape) != 2:
      raise ValueError(f'The input tensor should be with shape [batch_size, '
                       f'noise_dim], but {x.shape} received!')
    return super().forward(x)


class TruncationModule(nn.Module):
  """Implements the truncation module used in StyleGAN."""

  def __init__(self,
               resolution=1024,
               w_space_dim=512,
               truncation_psi=0.7,
               truncation_layers=8):
    super().__init__()

    self.num_layers = int(np.log2(resolution)) * 2 - 2
    self.w_space_dim = w_space_dim
    if truncation_psi is not None and truncation_layers is not None:
      self.use_truncation = True
    else:
      self.use_truncation = False
      truncation_psi = 1.0
      truncation_layers = 0
    self.register_buffer('w_avg', torch.zeros(w_space_dim))
    layer_idx = np.arange(self.num_layers).reshape(1, self.num_layers, 1)
    coefs = np.ones_like(layer_idx, dtype=np.float32)
    coefs[layer_idx < truncation_layers] *= truncation_psi
    self.register_buffer('truncation', torch.from_numpy(coefs))

  def forward(self, w):
    if len(w.shape) == 2:
      w = w.view(-1, 1, self.w_space_dim).repeat(1, self.num_layers, 1)
    if self.use_truncation:
      w_avg = self.w_avg.view(1, 1, self.w_space_dim)
      w = w_avg + (w - w_avg) * self.truncation
    return w


class SynthesisModule(nn.Module):
  """Implements the image synthesis module used in StyleGAN.

  Basically, this module executes several convolutional layers in sequence.
  """

  def __init__(self,
               resolution=1024,
               fused_scale='auto',
               output_channels=3,
               randomize_noise=False):
    super().__init__()

    try:
      self.channels = _RESOLUTIONS_TO_CHANNELS[resolution]
    except KeyError:
      raise ValueError(f'Invalid resolution: {resolution}!\n'
                       f'Resolutions allowed: '
                       f'{list(_RESOLUTIONS_TO_CHANNELS)}.')
    assert len(self.channels) == int(np.log2(resolution))

    for block_idx in range(1, len(self.channels)):
      if block_idx == 1:
        self.add_module(
            f'layer{2 * block_idx - 2}',
            FirstConvBlock(in_channels=self.channels[block_idx - 1],
                           randomize_noise=randomize_noise))
      else:
        self.add_module(
            f'layer{2 * block_idx - 2}',
            UpConvBlock(layer_idx=2 * block_idx - 2,
                        in_channels=self.channels[block_idx - 1],
                        out_channels=self.channels[block_idx],
                        randomize_noise=randomize_noise,
                        fused_scale=fused_scale))
      self.add_module(
          f'layer{2 * block_idx - 1}',
          ConvBlock(layer_idx=2 * block_idx - 1,
                    in_channels=self.channels[block_idx],
                    out_channels=self.channels[block_idx],
                    randomize_noise=randomize_noise))
      self.add_module(
          f'output{block_idx - 1}',
          LastConvBlock(in_channels=self.channels[block_idx],
                        out_channels=output_channels))

    self.upsample = ResolutionScalingLayer()
    self.lod = nn.Parameter(torch.zeros(()))

  def forward(self, w):
    lod = self.lod.cpu().tolist()
    x = self.layer0(w[:, 0])
    for block_idx in range(1, len(self.channels)):
      if block_idx + lod < len(self.channels):
        layer_idx = 2 * block_idx - 2
        if layer_idx == 0:
          x = self.__getattr__(f'layer{layer_idx}')(w[:, layer_idx])
        else:
          x = self.__getattr__(f'layer{layer_idx}')(x, w[:, layer_idx])
        layer_idx = 2 * block_idx - 1
        x = self.__getattr__(f'layer{layer_idx}')(x, w[:, layer_idx])
        image = self.__getattr__(f'output{block_idx - 1}')(x)
      else:
        image = self.upsample(image)
    return image


class PixelNormLayer(nn.Module):
  """Implements pixel-wise feature vector normalization layer."""

  def __init__(self, epsilon=1e-8):
    super().__init__()
    self.epsilon = epsilon

  def forward(self, x):
    return x / torch.sqrt(torch.mean(x**2, dim=1, keepdim=True) + self.epsilon)


class InstanceNormLayer(nn.Module):
  """Implements instance normalization layer."""

  def __init__(self, epsilon=1e-8):
    super().__init__()
    self.epsilon = epsilon

  def forward(self, x):
    if len(x.shape) != 4:
      raise ValueError(f'The input tensor should be with shape [batch_size, '
                       f'num_channels, height, width], but {x.shape} received!')
    x = x - torch.mean(x, dim=[2, 3], keepdim=True)
    x = x / torch.sqrt(torch.mean(x**2, dim=[2, 3], keepdim=True) +
                       self.epsilon)
    return x


class ResolutionScalingLayer(nn.Module):
  """Implements the resolution scaling layer.

  Basically, this layer can be used to upsample or downsample feature maps from
  spatial domain with nearest neighbor interpolation.
  """

  def __init__(self, scale_factor=2):
    super().__init__()
    self.scale_factor = scale_factor

  def forward(self, x):
    return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')


class BlurLayer(nn.Module):
  """Implements the blur layer used in StyleGAN."""

  def __init__(self,
               channels,
               kernel=(1, 2, 1),
               normalize=True,
               flip=False):
    super().__init__()
    kernel = np.array(kernel, dtype=np.float32).reshape(1, 3)
    kernel = kernel.T.dot(kernel)
    if normalize:
      kernel /= np.sum(kernel)
    if flip:
      kernel = kernel[::-1, ::-1]
    kernel = kernel.reshape(3, 3, 1, 1)
    kernel = np.tile(kernel, [1, 1, channels, 1])
    kernel = np.transpose(kernel, [2, 3, 0, 1])
    self.register_buffer('kernel', torch.from_numpy(kernel))
    self.channels = channels

  def forward(self, x):
    return F.conv2d(x, self.kernel, stride=1, padding=1, groups=self.channels)


class NoiseApplyingLayer(nn.Module):
  """Implements the noise applying layer used in StyleGAN."""

  def __init__(self, layer_idx, channels, randomize_noise=False):
    super().__init__()
    self.randomize_noise = randomize_noise
    self.res = 2**(layer_idx // 2 + 2)
    self.register_buffer('noise', torch.randn(1, 1, self.res, self.res))
    self.weight = nn.Parameter(torch.zeros(channels))

  def forward(self, x):
    if len(x.shape) != 4:
      raise ValueError(f'The input tensor should be with shape [batch_size, '
                       f'num_channels, height, width], but {x.shape} received!')
    if self.randomize_noise:
      noise = torch.randn(x.shape[0], 1, self.res, self.res).to(x)
    else:
      noise = self.noise
    return x + noise * self.weight.view(1, -1, 1, 1)


class StyleModulationLayer(nn.Module):
  """Implements the style modulation layer used in StyleGAN."""

  def __init__(self, channels, w_space_dim=512):
    super().__init__()
    self.channels = channels
    self.dense = DenseBlock(in_features=w_space_dim,
                            out_features=channels*2,
                            wscale_gain=1.0,
                            wscale_lr_multiplier=1.0,
                            activation_type='linear')

  def forward(self, x, w):
    if len(w.shape) != 2:
      raise ValueError(f'The input tensor should be with shape [batch_size, '
                       f'num_channels], but {x.shape} received!')
    style = self.dense(w)
    style = style.view(-1, 2, self.channels, 1, 1)
    return x * (style[:, 0] + 1) + style[:, 1]


class WScaleLayer(nn.Module):
  """Implements the layer to scale weight variable and add bias.

  Note that, the weight variable is trained in `nn.Conv2d` layer (or `nn.Linear`
  layer), and only scaled with a constant number , which is not trainable, in
  this layer. However, the bias variable is trainable in this layer.
  """

  def __init__(self,
               in_channels,
               out_channels,
               kernel_size,
               gain=np.sqrt(2.0),
               lr_multiplier=1.0):
    super().__init__()
    fan_in = in_channels * kernel_size * kernel_size
    self.scale = gain / np.sqrt(fan_in) * lr_multiplier
    self.bias = nn.Parameter(torch.zeros(out_channels))
    self.lr_multiplier = lr_multiplier

  def forward(self, x):
    if len(x.shape) == 4:
      return x * self.scale + self.bias.view(1, -1, 1, 1) * self.lr_multiplier
    if len(x.shape) == 2:
      return x * self.scale + self.bias.view(1, -1) * self.lr_multiplier
    raise ValueError(f'The input tensor should be with shape [batch_size, '
                     f'num_channels, height, width], or [batch_size, '
                     f'num_channels], but {x.shape} received!')


class EpilogueBlock(nn.Module):
  """Implements the epilogue block of each conv block."""

  def __init__(self,
               layer_idx,
               channels,
               randomize_noise=False,
               normalization_fn='instance'):
    super().__init__()
    self.apply_noise = NoiseApplyingLayer(layer_idx, channels, randomize_noise)
    self.bias = nn.Parameter(torch.zeros(channels))
    self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
    if normalization_fn == 'pixel':
      self.norm = PixelNormLayer()
    elif normalization_fn == 'instance':
      self.norm = InstanceNormLayer()
    else:
      raise NotImplementedError(f'Not implemented normalization function: '
                                f'{normalization_fn}!')
    self.style_mod = StyleModulationLayer(channels)

  def forward(self, x, w):
    x = self.apply_noise(x)
    x = x + self.bias.view(1, -1, 1, 1)
    x = self.activate(x)
    x = self.norm(x)
    x = self.style_mod(x, w)
    return x


class FirstConvBlock(nn.Module):
  """Implements the first convolutional block used in StyleGAN.

  Basically, this block starts from a const input, which is `ones(512, 4, 4)`.
  """

  def __init__(self, in_channels, randomize_noise=False):
    super().__init__()
    self.first_layer = nn.Parameter(torch.ones(1, in_channels, 4, 4))
    self.epilogue = EpilogueBlock(layer_idx=0,
                                  channels=in_channels,
                                  randomize_noise=randomize_noise)

  def forward(self, w):
    x = self.first_layer.repeat(w.shape[0], 1, 1, 1)
    x = self.epilogue(x, w)
    return x


class UpConvBlock(nn.Module):
  """Implements the convolutional block used in StyleGAN.

  Basically, this block is used as the first convolutional block for each
  resolution, which will execute upsampling.
  """

  def __init__(self,
               layer_idx,
               in_channels,
               out_channels,
               kernel_size=3,
               stride=1,
               padding=1,
               dilation=1,
               add_bias=False,
               fused_scale='auto',
               wscale_gain=np.sqrt(2.0),
               wscale_lr_multiplier=1.0,
               randomize_noise=False):
    """Initializes the class with block settings.

    Args:
      in_channels: Number of channels of the input tensor fed into this block.
      out_channels: Number of channels (kernels) of the output tensor.
      kernel_size: Size of the convolutional kernel.
      stride: Stride parameter for convolution operation.
      padding: Padding parameter for convolution operation.
      dilation: Dilation rate for convolution operation.
      add_bias: Whether to add bias onto the convolutional result.
      fused_scale: Whether to fuse `upsample` and `conv2d` together, resulting
        in `conv2d_transpose`.
      wscale_gain: The gain factor for `wscale` layer.
      wscale_lr_multiplier: The learning rate multiplier factor for `wscale`
        layer.
      randomize_noise: Whether to add random noise.

    Raises:
      ValueError: If the block is not applied to the first block for a
        particular resolution. Or `fused_scale` does not belong to [True, False,
        `auto`].
    """
    super().__init__()
    if layer_idx % 2 == 1:
      raise ValueError(f'This block is implemented as the first block of each '
                       f'resolution, but is applied to layer {layer_idx}!')
    if fused_scale not in [True, False, 'auto']:
      raise ValueError(f'`fused_scale` can only be [True, False, `auto`], '
                       f'but {fused_scale} received!')

    cur_res = 2 ** (layer_idx // 2 + 2)
    if fused_scale == 'auto':
      self.fused_scale = (cur_res >= _AUTO_FUSED_SCALE_MIN_RES)
    else:
      self.fused_scale = fused_scale

    if self.fused_scale:
      self.weight = nn.Parameter(
          torch.randn(kernel_size, kernel_size, in_channels, out_channels))

    else:
      self.upsample = ResolutionScalingLayer()
      self.conv = nn.Conv2d(in_channels=in_channels,
                            out_channels=out_channels,
                            kernel_size=kernel_size,
                            stride=stride,
                            padding=padding,
                            dilation=dilation,
                            groups=1,
                            bias=add_bias)

    fan_in = in_channels * kernel_size * kernel_size
    self.scale = wscale_gain / np.sqrt(fan_in) * wscale_lr_multiplier
    self.blur = BlurLayer(channels=out_channels)
    self.epilogue = EpilogueBlock(layer_idx=layer_idx,
                                  channels=out_channels,
                                  randomize_noise=randomize_noise)

  def forward(self, x, w):
    if self.fused_scale:
      kernel = self.weight * self.scale
      kernel = F.pad(kernel, (0, 0, 0, 0, 1, 1, 1, 1), 'constant', 0.0)
      kernel = (kernel[1:, 1:] + kernel[:-1, 1:] +
                kernel[1:, :-1] + kernel[:-1, :-1])
      kernel = kernel.permute(2, 3, 0, 1)
      x = F.conv_transpose2d(x, kernel, stride=2, padding=1)
    else:
      x = self.upsample(x)
      x = self.conv(x) * self.scale
    x = self.blur(x)
    x = self.epilogue(x, w)
    return x


class ConvBlock(nn.Module):
  """Implements the convolutional block used in StyleGAN.

  Basically, this block is used as the second convolutional block for each
  resolution.
  """

  def __init__(self,
               layer_idx,
               in_channels,
               out_channels,
               kernel_size=3,
               stride=1,
               padding=1,
               dilation=1,
               add_bias=False,
               wscale_gain=np.sqrt(2.0),
               wscale_lr_multiplier=1.0,
               randomize_noise=False):
    """Initializes the class with block settings.

    Args:
      in_channels: Number of channels of the input tensor fed into this block.
      out_channels: Number of channels (kernels) of the output tensor.
      kernel_size: Size of the convolutional kernel.
      stride: Stride parameter for convolution operation.
      padding: Padding parameter for convolution operation.
      dilation: Dilation rate for convolution operation.
      add_bias: Whether to add bias onto the convolutional result.
      wscale_gain: The gain factor for `wscale` layer.
      wscale_lr_multiplier: The learning rate multiplier factor for `wscale`
        layer.
      randomize_noise: Whether to add random noise.

    Raises:
      ValueError: If the block is not applied to the second block for a
        particular resolution.
    """
    super().__init__()
    if layer_idx % 2 == 0:
      raise ValueError(f'This block is implemented as the second block of each '
                       f'resolution, but is applied to layer {layer_idx}!')

    self.conv = nn.Conv2d(in_channels=in_channels,
                          out_channels=out_channels,
                          kernel_size=kernel_size,
                          stride=stride,
                          padding=padding,
                          dilation=dilation,
                          groups=1,
                          bias=add_bias)
    fan_in = in_channels * kernel_size * kernel_size
    self.scale = wscale_gain / np.sqrt(fan_in) * wscale_lr_multiplier
    self.epilogue = EpilogueBlock(layer_idx=layer_idx,
                                  channels=out_channels,
                                  randomize_noise=randomize_noise)

  def forward(self, x, w):
    x = self.conv(x) * self.scale
    x = self.epilogue(x, w)
    return x


class LastConvBlock(nn.Module):
  """Implements the last convolutional block used in StyleGAN.

  Basically, this block converts the final feature map to RGB image.
  """

  def __init__(self, in_channels, out_channels=3):
    super().__init__()
    self.conv = nn.Conv2d(in_channels=in_channels,
                          out_channels=out_channels,
                          kernel_size=1,
                          bias=False)
    self.scale = 1 / np.sqrt(in_channels)
    self.bias = nn.Parameter(torch.zeros(3))

  def forward(self, x):
    x = self.conv(x) * self.scale
    x = x + self.bias.view(1, -1, 1, 1)
    return x


class DenseBlock(nn.Module):
  """Implements the dense block used in StyleGAN.

  Basically, this block executes fully-connected layer, weight-scale layer,
  and activation layer in sequence.
  """

  def __init__(self,
               in_features,
               out_features,
               add_bias=False,
               wscale_gain=np.sqrt(2.0),
               wscale_lr_multiplier=0.01,
               activation_type='lrelu'):
    """Initializes the class with block settings.

    Args:
      in_features: Number of channels of the input tensor fed into this block.
      out_features: Number of channels of the output tensor.
      add_bias: Whether to add bias onto the fully-connected result.
      wscale_gain: The gain factor for `wscale` layer.
      wscale_lr_multiplier: The learning rate multiplier factor for `wscale`
        layer.
      activation_type: Type of activation function. Support `linear` and
        `lrelu`.

    Raises:
      NotImplementedError: If the input `activation_type` is not supported.
    """
    super().__init__()
    self.linear = nn.Linear(in_features=in_features,
                            out_features=out_features,
                            bias=add_bias)
    self.wscale = WScaleLayer(in_channels=in_features,
                              out_channels=out_features,
                              kernel_size=1,
                              gain=wscale_gain,
                              lr_multiplier=wscale_lr_multiplier)
    if activation_type == 'linear':
      self.activate = nn.Identity()
    elif activation_type == 'lrelu':
      self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
    else:
      raise NotImplementedError(f'Not implemented activation function: '
                                f'{activation_type}!')

  def forward(self, x):
    x = self.linear(x)
    x = self.wscale(x)
    x = self.activate(x)
    return x