yeecin
commited on
Commit
·
83b2527
1
Parent(s):
f037d02
init
Browse files- app.py +77 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from paddleocr import PaddleOCR
|
2 |
+
import json
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
|
9 |
+
# 获取随机的颜色
|
10 |
+
def get_random_color():
|
11 |
+
c = tuple(np.random.randint(0 ,256 ,3).tolist())
|
12 |
+
return c
|
13 |
+
|
14 |
+
|
15 |
+
# 绘制ocr识别结果
|
16 |
+
def draw_ocr_bbox( image ,boxes ,colors ):
|
17 |
+
print(colors)
|
18 |
+
box_num = len(boxes)
|
19 |
+
for i in range(box_num):
|
20 |
+
box = np.reshape(np.array(boxes[i]) ,[-1 ,1 ,2]).astype(np.int64)
|
21 |
+
image = cv2.polylines(np.array(image) ,[box] ,True ,colors[i] ,2)
|
22 |
+
return image
|
23 |
+
|
24 |
+
|
25 |
+
# torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg')
|
26 |
+
|
27 |
+
def inference( img: Image.Image ,lang ,confidence ):
|
28 |
+
ocr = PaddleOCR(use_angle_cls = True ,lang = lang ,use_gpu = False)
|
29 |
+
# img_path = img.name
|
30 |
+
img2np = np.array(img)
|
31 |
+
result = ocr.ocr(img2np ,cls = True)[0]
|
32 |
+
# rgb
|
33 |
+
image = img.convert('RGB')
|
34 |
+
boxes = [line[0] for line in result]
|
35 |
+
txts = [line[1][0] for line in result]
|
36 |
+
scores = [line[1][1] for line in result]
|
37 |
+
|
38 |
+
# 识别结果
|
39 |
+
final_result = [dict(boxes = box ,txt = txt ,score = score ,_c = get_random_color()) for box ,txt ,score in
|
40 |
+
zip(boxes ,txts ,scores)]
|
41 |
+
# 过滤 score < 0.5 的
|
42 |
+
final_result = [item for item in final_result if item['score'] > confidence]
|
43 |
+
|
44 |
+
im_show = draw_ocr_bbox(image ,[item['boxes'] for item in final_result] ,[item['_c'] for item in final_result])
|
45 |
+
im_show = Image.fromarray(im_show)
|
46 |
+
data = [[json.dumps(item['boxes']) ,round(item['score'] ,3) ,item['txt']] for item in final_result]
|
47 |
+
return im_show ,data
|
48 |
+
|
49 |
+
|
50 |
+
title = 'PaddleOCR'
|
51 |
+
description = 'Gradio demo for PaddleOCR.'
|
52 |
+
|
53 |
+
examples = [
|
54 |
+
['example_imgs/example.jpg' ,'en' ,0.5] ,
|
55 |
+
['example_imgs/ch.jpg' ,'ch' ,0.7] ,
|
56 |
+
['example_imgs/img_12.jpg' ,'en' ,0.7] ,
|
57 |
+
]
|
58 |
+
|
59 |
+
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
60 |
+
|
61 |
+
if __name__ == '__main__':
|
62 |
+
demo = gr.Interface(
|
63 |
+
inference ,
|
64 |
+
[gr.Image(type = 'pil' ,label = 'Input') ,
|
65 |
+
gr.Dropdown(choices = ['ch' ,'en' ,'fr' ,'german' ,'korean' ,'japan'] ,value = 'ch' ,label = 'language') ,
|
66 |
+
gr.Slider(0.1 ,1 ,0.5 ,step = 0.1 ,label = 'confidence_threshold')
|
67 |
+
] ,
|
68 |
+
# 输出
|
69 |
+
[gr.Image(type = 'pil' ,label = 'Output') ,
|
70 |
+
gr.Dataframe(headers = ['bbox' ,'score' ,'text'] ,label = 'Result')] ,
|
71 |
+
title = title ,
|
72 |
+
description = description ,
|
73 |
+
examples = examples ,
|
74 |
+
css = css ,
|
75 |
+
)
|
76 |
+
demo.queue(max_size = 10)
|
77 |
+
demo.launch(debug = True ,server_name = "0.0.0.0")
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
paddlepaddle==2.6.1
|
2 |
+
paddleocr==2.7.3
|