from paddleocr import PaddleOCR import json from PIL import Image import gradio as gr import numpy as np import cv2 # 获取随机的颜色 def get_random_color(): c = tuple(np.random.randint(0 ,256 ,3).tolist()) return c # 绘制ocr识别结果 def draw_ocr_bbox( image ,boxes ,colors ): print(colors) box_num = len(boxes) for i in range(box_num): box = np.reshape(np.array(boxes[i]) ,[-1 ,1 ,2]).astype(np.int64) image = cv2.polylines(np.array(image) ,[box] ,True ,colors[i] ,2) return image # torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg') def inference( img: Image.Image ,lang ,confidence ): ocr = PaddleOCR(use_angle_cls = True ,lang = lang ,use_gpu = False) # img_path = img.name img2np = np.array(img) result = ocr.ocr(img2np ,cls = True)[0] # rgb image = img.convert('RGB') boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] # 识别结果 final_result = [dict(boxes = box ,txt = txt ,score = score ,_c = get_random_color()) for box ,txt ,score in zip(boxes ,txts ,scores)] # 过滤 score < 0.5 的 final_result = [item for item in final_result if item['score'] > confidence] im_show = draw_ocr_bbox(image ,[item['boxes'] for item in final_result] ,[item['_c'] for item in final_result]) im_show = Image.fromarray(im_show) data = [[json.dumps(item['boxes']) ,round(item['score'] ,3) ,item['txt']] for item in final_result] return im_show ,data title = 'PaddleOCR' description = 'Gradio demo for PaddleOCR.' examples = [ ['example_imgs/example.jpg' ,'en' ,0.5] , ['example_imgs/ch.jpg' ,'ch' ,0.7] , ['example_imgs/img_12.jpg' ,'en' ,0.7] , ] css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" if __name__ == '__main__': demo = gr.Interface( inference , [gr.Image(type = 'pil' ,label = 'Input') , gr.Dropdown(choices = ['ch' ,'en' ,'fr' ,'german' ,'korean' ,'japan'] ,value = 'ch' ,label = 'language') , gr.Slider(0.1 ,1 ,0.5 ,step = 0.1 ,label = 'confidence_threshold') ] , # 输出 [gr.Image(type = 'pil' ,label = 'Output') , gr.Dataframe(headers = ['bbox' ,'score' ,'text'] ,label = 'Result')] , title = title , description = description , examples = examples , css = css , ) demo.queue(max_size = 10) demo.launch(debug = True ,server_name = "0.0.0.0")