yellowcandle's picture
Update app.py to use Whisper large-v2 model for audio transcription
043229b unverified
raw
history blame
1.2 kB
import spaces
import gradio as gr
# Use a pipeline as a high-level helper
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
@spaces.GPU(duration=120)
def transcribe_audio(audio):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=25,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
result = pipe(audio)
return result["text"]
demo = gr.Interface(fn=transcribe_audio,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs="text")
demo.launch()