Spaces:
Running
Running
File size: 8,132 Bytes
7d1962a ab13bd6 ca877b2 ef219f6 4d31b4c 7d1962a 4ecef00 4d31b4c ab13bd6 05eef7a ca877b2 ab13bd6 4d31b4c ab13bd6 ef219f6 ab13bd6 4d31b4c ab13bd6 4d31b4c ab13bd6 ca877b2 ab13bd6 4d31b4c 05eef7a 4d31b4c 05eef7a ef219f6 4d31b4c ab13bd6 ca877b2 05eef7a 4d31b4c 05eef7a 4d31b4c 05eef7a 4d31b4c ab13bd6 05eef7a 4d31b4c ca877b2 4d31b4c ca877b2 ab13bd6 4d31b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import gradio as gr
from text_generation import Client
from conversation import get_default_conv_template
from transformers import AutoTokenizer
DESCRIPTION = """
# Language Models for Taiwanese Culture
<p align="center">
βοΈ <a href="https://huggingface.co/spaces/yentinglin/Taiwan-LLaMa2" target="_blank">Online Demo</a>
β’
π€ <a href="https://huggingface.co/yentinglin" target="_blank">HF Repo</a> β’ π¦ <a href="https://twitter.com/yentinglin56" target="_blank">Twitter</a> β’ π <a href="https://arxiv.org/pdf/2305.13711.pdf" target="_blank">[Paper Coming Soon]</a>
β’ π¨οΈ <a href="https://yentingl.com/" target="_blank">Yen-Ting Lin</a>
<br/><br/>
<img src="https://www.csie.ntu.edu.tw/~miulab/taiwan-llama/logo-v2.png" width="100"> <br/>
</p>
Taiwan-LLaMa is a fine-tuned model specifically designed for traditional Chinese applications. It is built upon the LLaMa 2 architecture and includes a pretraining phase with over 5 billion tokens and fine-tuning with over 490k multi-turn conversational data in Traditional Chinese.
## Key Features
1. **Traditional Chinese Support**: The model is fine-tuned to understand and generate text in Traditional Chinese, making it suitable for Taiwanese culture and related applications.
2. **Instruction-Tuned**: Further fine-tuned on conversational data to offer context-aware and instruction-following responses.
3. **Performance on Vicuna Benchmark**: Taiwan-LLaMa's relative performance on Vicuna Benchmark is measured against models like GPT-4 and ChatGPT. It's particularly optimized for Taiwanese culture.
4. **Flexible Customization**: Advanced options for controlling the model's behavior like system prompt, temperature, top-p, and top-k are available in the demo.
## Model Versions
Different versions of Taiwan-LLaMa are available:
- **Taiwan-LLaMa v1.0 (This demo)**: Optimized for Taiwanese Culture
- **Taiwan-LLaMa v0.9**: Partial instruction set
- **Taiwan-LLaMa v0.0**: No Traditional Chinese pretraining
The models can be accessed from the provided links in the Hugging Face repository.
Try out the demo to interact with Taiwan-LLaMa and experience its capabilities in handling Traditional Chinese!
"""
LICENSE = """
## Licenses
- Code is licensed under Apache 2.0 License.
- Models are licensed under the LLAMA 2 Community License.
- By using this model, you agree to the terms and conditions specified in the license.
- By using this demo, you agree to share your input utterances with us to improve the model.
## Acknowledgements
Taiwan-LLaMa project acknowledges the efforts of the [Meta LLaMa team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) in democratizing large language models.
"""
DEFAULT_SYSTEM_PROMPT = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. You are built by NTU Miulab by Yen-Ting Lin for research purpose."
endpoint_url = os.environ.get("ENDPOINT_URL", "http://127.0.0.1:8080")
client = Client(endpoint_url, timeout=120)
eos_token = "</s>"
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 1024
max_prompt_length = 4096 - MAX_MAX_NEW_TOKENS - 10
tokenizer = AutoTokenizer.from_pretrained("yentinglin/Taiwan-LLaMa-v1.0")
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot()
with gr.Row():
msg = gr.Textbox(
container=False,
show_label=False,
placeholder='Type a message...',
scale=10,
)
submit_button = gr.Button('Submit',
variant='primary',
scale=1,
min_width=0)
with gr.Row():
retry_button = gr.Button('π Retry', variant='secondary')
undo_button = gr.Button('β©οΈ Undo', variant='secondary')
clear = gr.Button('ποΈ Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='Advanced options', open=False):
system_prompt = gr.Textbox(label='System prompt',
value=DEFAULT_SYSTEM_PROMPT,
lines=6)
max_new_tokens = gr.Slider(
label='Max new tokens',
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.7,
)
top_p = gr.Slider(
label='Top-p (nucleus sampling)',
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k = gr.Slider(
label='Top-k',
minimum=1,
maximum=1000,
step=1,
value=50,
)
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, max_new_tokens, temperature, top_p, top_k, system_prompt):
conv = get_default_conv_template("vicuna").copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # map human to USER and gpt to ASSISTANT
conv.system = system_prompt
for user, bot in history:
conv.append_message(roles['human'], user)
conv.append_message(roles["gpt"], bot)
msg = conv.get_prompt()
prompt_tokens = tokenizer.encode(msg)
length_of_prompt = len(prompt_tokens)
if length_of_prompt > max_prompt_length:
msg = tokenizer.decode(prompt_tokens[-max_prompt_length + 1:])
history[-1][1] = ""
for response in client.generate_stream(
msg,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
):
if not response.token.special:
character = response.token.text
history[-1][1] += character
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
fn=bot,
inputs=[
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
system_prompt,
],
outputs=chatbot
)
submit_button.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
fn=bot,
inputs=[
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
system_prompt,
],
outputs=chatbot
)
def delete_prev_fn(
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def display_input(message: str,
history: list[tuple[str, str]]) -> list[tuple[str, str]]:
history.append((message, ''))
return history
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=bot,
inputs=[
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
system_prompt,
],
outputs=chatbot,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=msg,
api_name=False,
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
gr.Markdown(LICENSE)
demo.queue(max_size=128)
demo.launch()
|