Spaces:
Running
Running
File size: 5,084 Bytes
ca877b2 7d1962a ab13bd6 ca877b2 ef219f6 7d1962a ab13bd6 05eef7a ca877b2 ab13bd6 ef219f6 ab13bd6 ef219f6 ab13bd6 ca877b2 ab13bd6 ca877b2 ab13bd6 ca877b2 05eef7a ef219f6 ab13bd6 ca877b2 05eef7a ca877b2 05eef7a ca877b2 ab13bd6 05eef7a ca877b2 05eef7a ca877b2 ab13bd6 05eef7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import time
import os
import gradio as gr
from text_generation import Client
from conversation import get_default_conv_template
from transformers import AutoTokenizer
endpoint_url = os.environ.get("ENDPOINT_URL", "http://127.0.0.1:8080")
client = Client(endpoint_url, timeout=120)
eos_token = "</s>"
max_prompt_length = 4000
tokenizer = AutoTokenizer.from_pretrained("yentinglin/Taiwan-LLaMa-v1.0")
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
conv = get_default_conv_template("vicuna").copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # map human to USER and gpt to ASSISTANT
for user, bot in history:
conv.append_message(roles['human'], user)
conv.append_message(roles["gpt"], bot)
msg = conv.get_prompt()
prompt_tokens = tokenizer.encode(msg)
length_of_prompt = len(prompt_tokens)
if length_of_prompt > max_prompt_length:
msg = tokenizer.decode(prompt_tokens[-max_prompt_length:])
history[-1][1] = ""
for response in client.generate_stream(
msg,
max_new_tokens=512,
):
if not response.token.special:
character = response.token.text
history[-1][1] += character
yield history
def generate_response(history, max_new_token=512, top_p=0.9, temperature=0.8, do_sample=True):
conv = get_default_conv_template("vicuna").copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # map human to USER and gpt to ASSISTANT
for user, bot in history:
conv.append_message(roles['human'], user)
conv.append_message(roles["gpt"], bot)
msg = conv.get_prompt()
for response in client.generate_stream(
msg,
max_new_tokens=max_new_token,
top_p=top_p,
temperature=temperature,
do_sample=do_sample,
):
history[-1][1] = ""
# if not response.token.special:
character = response.token.text
history[-1][1] += character
print(history[-1][1])
time.sleep(0.05)
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch()
#
# with gr.Blocks() as demo:
# chatbot = gr.Chatbot()
# with gr.Row():
# with gr.Column(scale=4):
# with gr.Column(scale=12):
# user_input = gr.Textbox(
# show_label=False,
# placeholder="Shift + Enter傳送...",
# lines=10).style(
# container=False)
# with gr.Column(min_width=32, scale=1):
# submitBtn = gr.Button("Submit", variant="primary")
# with gr.Column(scale=1):
# emptyBtn = gr.Button("Clear History")
# max_new_token = gr.Slider(
# 1,
# 1024,
# value=128,
# step=1.0,
# label="Maximum New Token Length",
# interactive=True)
# top_p = gr.Slider(0, 1, value=0.9, step=0.01,
# label="Top P", interactive=True)
# temperature = gr.Slider(
# 0,
# 1,
# value=0.5,
# step=0.01,
# label="Temperature",
# interactive=True)
# top_k = gr.Slider(1, 40, value=40, step=1,
# label="Top K", interactive=True)
# do_sample = gr.Checkbox(
# value=True,
# label="Do Sample",
# info="use random sample strategy",
# interactive=True)
# repetition_penalty = gr.Slider(
# 1.0,
# 3.0,
# value=1.1,
# step=0.1,
# label="Repetition Penalty",
# interactive=True)
#
# params = [user_input, chatbot]
# predict_params = [
# chatbot,
# max_new_token,
# top_p,
# temperature,
# top_k,
# do_sample,
# repetition_penalty]
#
# submitBtn.click(
# generate_response,
# [user_input, max_new_token, top_p, top_k, temperature, do_sample, repetition_penalty],
# [chatbot],
# queue=False
# )
#
# user_input.submit(
# generate_response,
# [user_input, max_new_token, top_p, top_k, temperature, do_sample, repetition_penalty],
# [chatbot],
# queue=False
# )
#
# submitBtn.click(lambda: None, [], [user_input])
#
# emptyBtn.click(lambda: chatbot.reset(), outputs=[chatbot], show_progress=True)
#
# demo.launch() |