Spaces:
Running
Running
""" | |
Conversation prompt template. | |
Now we support | |
- Vicuna | |
- Koala | |
- OpenAssistant/oasst-sft-1-pythia-12b | |
- StabilityAI/stablelm-tuned-alpha-7b | |
- databricks/dolly-v2-12b | |
- THUDM/chatglm-6b | |
- Alpaca/LLaMa | |
""" | |
import dataclasses | |
from enum import auto, Enum | |
from typing import List, Tuple, Any | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
DOLLY = auto() | |
OASST_PYTHIA = auto() | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "###" | |
sep2: str = None | |
# Used for gradio server | |
skip_next: bool = False | |
conv_id: Any = None | |
def get_prompt(self): | |
if self.sep_style == SeparatorStyle.SINGLE: | |
ret = self.system | |
for role, message in self.messages: | |
if message: | |
ret += self.sep + " " + role + ": " + message | |
else: | |
ret += self.sep + " " + role + ":" | |
return ret | |
elif self.sep_style == SeparatorStyle.TWO: | |
seps = [self.sep, self.sep2] | |
ret = self.system + seps[0] | |
for i, (role, message) in enumerate(self.messages): | |
if message: | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
return ret | |
elif self.sep_style == SeparatorStyle.DOLLY: | |
seps = [self.sep, self.sep2] | |
ret = self.system | |
for i, (role, message) in enumerate(self.messages): | |
if message: | |
ret += role + ":\n" + message + seps[i % 2] | |
if i % 2 == 1: | |
ret += "\n\n" | |
else: | |
ret += role + ":\n" | |
return ret | |
elif self.sep_style == SeparatorStyle.OASST_PYTHIA: | |
ret = self.system | |
for role, message in self.messages: | |
if message: | |
ret += role + message + self.sep | |
else: | |
ret += role | |
return ret | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset :]): | |
if i % 2 == 0: | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return Conversation( | |
system=self.system, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
conv_id=self.conv_id, | |
) | |
def dict(self): | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
"conv_id": self.conv_id, | |
} | |
conv_one_shot = Conversation( | |
system="A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions.", | |
roles=("Human", "Assistant"), | |
messages=( | |
( | |
"Human", | |
"What are the key differences between renewable and non-renewable energy sources?", | |
), | |
( | |
"Assistant", | |
"Renewable energy sources are those that can be replenished naturally in a relatively " | |
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. " | |
"Non-renewable energy sources, on the other hand, are finite and will eventually be " | |
"depleted, such as coal, oil, and natural gas. Here are some key differences between " | |
"renewable and non-renewable energy sources:\n" | |
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable " | |
"energy sources are finite and will eventually run out.\n" | |
"2. Environmental impact: Renewable energy sources have a much lower environmental impact " | |
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, " | |
"and other negative effects.\n" | |
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically " | |
"have lower operational costs than non-renewable sources.\n" | |
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote " | |
"locations than non-renewable sources.\n" | |
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different " | |
"situations and needs, while non-renewable sources are more rigid and inflexible.\n" | |
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while " | |
"non-renewable sources are not, and their depletion can lead to economic and social instability.", | |
), | |
), | |
offset=2, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="###", | |
) | |
conv_vicuna_v1_1 = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
# system="一位好奇的用戶和一個人工智能助理之間的聊天。你是一位助理。請對用戶的問題提供有用、詳細和有禮貌的答案。", | |
roles=("USER", "ASSISTANT"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
conv_story = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=("USER", "ASSISTANT"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="<|endoftext|>", | |
) | |
conv_koala_v1 = Conversation( | |
system="BEGINNING OF CONVERSATION:", | |
roles=("USER", "GPT"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
conv_dolly = Conversation( | |
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n", | |
roles=("### Instruction", "### Response"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.DOLLY, | |
sep="\n\n", | |
sep2="### End", | |
) | |
conv_oasst = Conversation( | |
system="", | |
roles=("<|prompter|>", "<|assistant|>"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.OASST_PYTHIA, | |
sep="<|endoftext|>", | |
) | |
conv_stablelm = Conversation( | |
system="""<|SYSTEM|># StableLM Tuned (Alpha version) | |
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI. | |
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. | |
- StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes. | |
- StableLM will refuse to participate in anything that could harm a human. | |
""", | |
roles=("<|USER|>", "<|ASSISTANT|>"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.OASST_PYTHIA, | |
sep="", | |
) | |
conv_templates = { | |
"conv_one_shot": conv_one_shot, | |
"vicuna_v1.1": conv_vicuna_v1_1, | |
"koala_v1": conv_koala_v1, | |
"dolly": conv_dolly, | |
"oasst": conv_oasst, | |
} | |
def get_default_conv_template(model_name): | |
model_name = model_name.lower() | |
if "vicuna" in model_name or "output" in model_name: | |
return conv_vicuna_v1_1 | |
elif "koala" in model_name: | |
return conv_koala_v1 | |
elif "dolly-v2" in model_name: | |
return conv_dolly | |
elif "oasst" in model_name and "pythia" in model_name: | |
return conv_oasst | |
elif "stablelm" in model_name: | |
return conv_stablelm | |
return conv_one_shot | |
def compute_skip_echo_len(model_name, conv, prompt): | |
model_name = model_name.lower() | |
if "chatglm" in model_name: | |
skip_echo_len = len(conv.messages[-2][1]) + 1 | |
elif "dolly-v2" in model_name: | |
special_toks = ["### Instruction:", "### Response:", "### End"] | |
skip_echo_len = len(prompt) | |
for tok in special_toks: | |
skip_echo_len -= prompt.count(tok) * len(tok) | |
elif "oasst" in model_name and "pythia" in model_name: | |
special_toks = ["<|prompter|>", "<|assistant|>", "<|endoftext|>"] | |
skip_echo_len = len(prompt) | |
for tok in special_toks: | |
skip_echo_len -= prompt.count(tok) * len(tok) | |
elif "stablelm" in model_name: | |
special_toks = ["<|SYSTEM|>", "<|USER|>", "<|ASSISTANT|>"] | |
skip_echo_len = len(prompt) | |
for tok in special_toks: | |
skip_echo_len -= prompt.count(tok) * len(tok) | |
else: | |
skip_echo_len = len(prompt) + 1 - prompt.count("</s>") * 3 | |
return skip_echo_len | |
if __name__ == "__main__": | |
print(default_conversation.get_prompt()) | |