Taiwan-LLaMa2 / app.py
yentinglin's picture
Create app.py
ab13bd6
raw
history blame
4.83 kB
import gradio as gr
from text_generation import Client
# text-generation 0.6.0
eos_token = "</s>"
def _concat_messages(messages):
message_text = ""
for message in messages:
if message["role"] == "system":
message_text += "<|system|>\n" + message["content"].strip() + "\n"
elif message["role"] == "user":
message_text += "<|user|>\n" + message["content"].strip() + "\n"
elif message["role"] == "assistant":
message_text += "<|assistant|>\n" + message["content"].strip() + eos_token + "\n"
else:
raise ValueError("Invalid role: {}".format(message["role"]))
return message_text
endpoint_url = "http://ec2-52-193-118-191.ap-northeast-1.compute.amazonaws.com:8080"
client = Client(endpoint_url, timeout=120)
def generate_response(user_input, max_new_token: 100, top_p, temperature, top_k, do_sample, repetition_penalty):
msg = _concat_messages([
{"role": "system", "content": "你是一個由國立台灣大學的NLP實驗室開發的大型語言模型。你基於Transformer架構被訓練,並已經經過大量的台灣中文語料庫的訓練。你的設計目標是理解和生成優雅的繁體中文,並具有跨語境和跨領域的對話能力。使用者可以向你提問任何問題或提出任何話題,並期待從你那裡得到高質量的回答。你應該要盡量幫助使用者解決問題,提供他們需要的資訊,並在適當時候給予建議。"},
{"role": "user", "content": user_input},
])
msg += "<|assistant|>\n"
res = client.generate(msg, stop_sequences=["<|assistant|>", eos_token, "<|system|>", "<|user|>"],
max_new_tokens=1000)
return [("assistant", res.generated_text)]
with gr.Blocks() as demo:
# github_banner_path = 'https://raw.githubusercontent.com/ymcui/Chinese-LLaMA-Alpaca/main/pics/banner.png'
# gr.HTML(f'<p align="center"><a href="https://github.com/ymcui/Chinese-LLaMA-Alpaca"><img src={github_banner_path} width="700"/></a></p>')
# gr.Markdown("> 为了促进大模型在中文NLP社区的开放研究,本项目开源了中文LLaMA模型和指令精调的Alpaca大模型。这些模型在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练,进一步提升了中文基础语义理解能力。同时,中文Alpaca模型进一步使用了中文指令数据进行精调,显著提升了模型对指令的理解和执行能力。")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False,
placeholder="Shift + Enter发送消息...",
lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_new_token = gr.Slider(
0,
4096,
value=512,
step=1.0,
label="Maximum New Token Length",
interactive=True)
top_p = gr.Slider(0, 1, value=0.9, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0,
1,
value=0.5,
step=0.01,
label="Temperature",
interactive=True)
top_k = gr.Slider(1, 40, value=40, step=1,
label="Top K", interactive=True)
do_sample = gr.Checkbox(
value=True,
label="Do Sample",
info="use random sample strategy",
interactive=True)
repetition_penalty = gr.Slider(
1.0,
3.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
interactive=True)
params = [user_input, chatbot]
predict_params = [
chatbot,
max_new_token,
top_p,
temperature,
top_k,
do_sample,
repetition_penalty]
submitBtn.click(
generate_response,
[user_input],
[chatbot],
queue=False).then(
None,
None,
[user_input],
queue=False)
user_input.submit(
generate_response,
[user_input],
[chatbot],
queue=False).then(
None,
None,
[user_input],
queue=False)
submitBtn.click(lambda: None, [], [user_input])
emptyBtn.click(lambda: chatbot.reset(), outputs=[chatbot], show_progress=True)
demo.launch(share=True)