Spaces:
Running
Running
import os | |
import gradio as gr | |
from text_generation import Client | |
eos_token = "</s>" | |
def _concat_messages(messages): | |
message_text = "" | |
for message in messages: | |
if message["role"] == "system": | |
message_text += "<|system|>\n" + message["content"].strip() + "\n" | |
elif message["role"] == "user": | |
message_text += "<|user|>\n" + message["content"].strip() + "\n" | |
elif message["role"] == "assistant": | |
message_text += "<|assistant|>\n" + message["content"].strip() + eos_token + "\n" | |
else: | |
raise ValueError("Invalid role: {}".format(message["role"])) | |
return message_text | |
endpoint_url = os.environ.get("ENDPOINT_URL") | |
client = Client(endpoint_url, timeout=120) | |
def generate_response(user_input, max_new_token: 100, top_p, temperature, top_k, do_sample, repetition_penalty): | |
msg = _concat_messages([ | |
{"role": "system", "content": "你是一個由國立台灣大學的NLP實驗室開發的大型語言模型。你基於Transformer架構被訓練,並已經經過大量的台灣中文語料庫的訓練。你的設計目標是理解和生成優雅的繁體中文,並具有跨語境和跨領域的對話能力。使用者可以向你提問任何問題或提出任何話題,並期待從你那裡得到高質量的回答。你應該要盡量幫助使用者解決問題,提供他們需要的資訊,並在適當時候給予建議。"}, | |
{"role": "user", "content": user_input}, | |
]) | |
msg += "<|assistant|>\n" | |
res = client.generate(msg, stop_sequences=["<|assistant|>", eos_token, "<|system|>", "<|user|>"], | |
max_new_tokens=1000, top_p=0.9, do_sample=True, temperature=1.0) | |
return [("assistant", res.generated_text)] | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Column(scale=12): | |
user_input = gr.Textbox( | |
show_label=False, | |
placeholder="Shift + Enter傳送...", | |
lines=10).style( | |
container=False) | |
with gr.Column(min_width=32, scale=1): | |
submitBtn = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=1): | |
emptyBtn = gr.Button("Clear History") | |
max_new_token = gr.Slider( | |
0, | |
4096, | |
value=512, | |
step=1.0, | |
label="Maximum New Token Length", | |
interactive=True) | |
top_p = gr.Slider(0, 1, value=0.9, step=0.01, | |
label="Top P", interactive=True) | |
temperature = gr.Slider( | |
0, | |
1, | |
value=0.5, | |
step=0.01, | |
label="Temperature", | |
interactive=True) | |
top_k = gr.Slider(1, 40, value=40, step=1, | |
label="Top K", interactive=True) | |
do_sample = gr.Checkbox( | |
value=True, | |
label="Do Sample", | |
info="use random sample strategy", | |
interactive=True) | |
repetition_penalty = gr.Slider( | |
1.0, | |
3.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition Penalty", | |
interactive=True) | |
params = [user_input, chatbot] | |
predict_params = [ | |
chatbot, | |
max_new_token, | |
top_p, | |
temperature, | |
top_k, | |
do_sample, | |
repetition_penalty] | |
submitBtn.click( | |
generate_response, | |
[user_input], | |
[chatbot], | |
queue=False).then( | |
None, | |
None, | |
[user_input], | |
queue=False) | |
user_input.submit( | |
generate_response, | |
[user_input], | |
[chatbot], | |
queue=False).then( | |
None, | |
None, | |
[user_input], | |
queue=False) | |
submitBtn.click(lambda: None, [], [user_input]) | |
emptyBtn.click(lambda: chatbot.reset(), outputs=[chatbot], show_progress=True) | |
demo.launch() | |