import time import os import gradio as gr from text_generation import Client from conversation import get_default_conv_template from transformers import AutoTokenizer endpoint_url = os.environ.get("ENDPOINT_URL", "http://127.0.0.1:8080") client = Client(endpoint_url, timeout=120) eos_token = "" max_prompt_length = 4000 tokenizer = AutoTokenizer.from_pretrained("yentinglin/Taiwan-LLaMa-v1.0") with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") def user(user_message, history): return "", history + [[user_message, None]] def bot(history): conv = get_default_conv_template("vicuna").copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # map human to USER and gpt to ASSISTANT for user, bot in history: conv.append_message(roles['human'], user) conv.append_message(roles["gpt"], bot) msg = conv.get_prompt() prompt_tokens = tokenizer.encode(msg) length_of_prompt = len(prompt_tokens) if length_of_prompt > max_prompt_length: msg = tokenizer.decode(prompt_tokens[-max_prompt_length+1:]) history[-1][1] = "" for response in client.generate_stream( msg, max_new_tokens=512, ): if not response.token.special: character = response.token.text history[-1][1] += character yield history def generate_response(history, max_new_token=512, top_p=0.9, temperature=0.8, do_sample=True): conv = get_default_conv_template("vicuna").copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # map human to USER and gpt to ASSISTANT for user, bot in history: conv.append_message(roles['human'], user) conv.append_message(roles["gpt"], bot) msg = conv.get_prompt() for response in client.generate_stream( msg, max_new_tokens=max_new_token, top_p=top_p, temperature=temperature, do_sample=do_sample, ): history[-1][1] = "" # if not response.token.special: character = response.token.text history[-1][1] += character print(history[-1][1]) time.sleep(0.05) yield history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() demo.launch() # # with gr.Blocks() as demo: # chatbot = gr.Chatbot() # with gr.Row(): # with gr.Column(scale=4): # with gr.Column(scale=12): # user_input = gr.Textbox( # show_label=False, # placeholder="Shift + Enter傳送...", # lines=10).style( # container=False) # with gr.Column(min_width=32, scale=1): # submitBtn = gr.Button("Submit", variant="primary") # with gr.Column(scale=1): # emptyBtn = gr.Button("Clear History") # max_new_token = gr.Slider( # 1, # 1024, # value=128, # step=1.0, # label="Maximum New Token Length", # interactive=True) # top_p = gr.Slider(0, 1, value=0.9, step=0.01, # label="Top P", interactive=True) # temperature = gr.Slider( # 0, # 1, # value=0.5, # step=0.01, # label="Temperature", # interactive=True) # top_k = gr.Slider(1, 40, value=40, step=1, # label="Top K", interactive=True) # do_sample = gr.Checkbox( # value=True, # label="Do Sample", # info="use random sample strategy", # interactive=True) # repetition_penalty = gr.Slider( # 1.0, # 3.0, # value=1.1, # step=0.1, # label="Repetition Penalty", # interactive=True) # # params = [user_input, chatbot] # predict_params = [ # chatbot, # max_new_token, # top_p, # temperature, # top_k, # do_sample, # repetition_penalty] # # submitBtn.click( # generate_response, # [user_input, max_new_token, top_p, top_k, temperature, do_sample, repetition_penalty], # [chatbot], # queue=False # ) # # user_input.submit( # generate_response, # [user_input, max_new_token, top_p, top_k, temperature, do_sample, repetition_penalty], # [chatbot], # queue=False # ) # # submitBtn.click(lambda: None, [], [user_input]) # # emptyBtn.click(lambda: chatbot.reset(), outputs=[chatbot], show_progress=True) # # demo.launch()