File size: 11,979 Bytes
a104d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os.path

import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl

import numpy as np
import sklearn
from sklearn.metrics import roc_curve, auc
from scipy.spatial.distance import cdist

from third_party.arcface.mouth_net import MouthNet
from third_party.arcface.margin_loss import Softmax, AMArcFace, AMCosFace
from third_party.arcface.load_dataset import MXFaceDataset, EvalDataset
from third_party.bisenet.bisenet import BiSeNet


class MouthNetPL(pl.LightningModule):
    def __init__(
            self,
            num_classes: int,
            batch_size: int = 256,
            dim_feature: int = 128,
            header_type: str = 'AMArcFace',
            header_params: tuple = (64.0, 0.5, 0.0, 0.0),  # (s, m, a, k)
            rec_folder: str = "/gavin/datasets/msml/ms1m-retinaface",
            learning_rate: int = 0.1,
            crop: tuple = (0, 0, 112, 112),  # (w1,h1,w2,h2)
    ):
        super(MouthNetPL, self).__init__()

        # self.img_size = (112, 112)

        ''' mouth feature extractor '''
        bisenet = BiSeNet(19)
        bisenet.load_state_dict(
            torch.load(
                "/gavin/datasets/hanbang/79999_iter.pth",
                map_location="cpu",
            )
        )
        bisenet.eval()
        bisenet.requires_grad_(False)
        self.mouth_net = MouthNet(
            bisenet=None,
            feature_dim=dim_feature,
            crop_param=crop,
            iresnet_pretrained=False,
        )

        ''' head & loss '''
        self.automatic_optimization = False
        self.dim_feature = dim_feature
        self.num_classes = num_classes
        self._prepare_header(header_type, header_params)
        self.cls_criterion = torch.nn.CrossEntropyLoss()
        self.learning_rate = learning_rate

        ''' dataset '''
        assert os.path.exists(rec_folder)
        self.rec_folder = rec_folder
        self.batch_size = batch_size
        self.crop_param = crop

        ''' validation '''

    def _prepare_header(self, head_type, header_params):
        dim_in = self.dim_feature
        dim_out = self.num_classes

        """ Get hyper-params of header """
        s, m, a, k = header_params

        """ Choose the header """
        if 'Softmax' in head_type:
            self.classification = Softmax(dim_in, dim_out, device_id=None)
        elif 'AMCosFace' in head_type:
            self.classification = AMCosFace(dim_in, dim_out,
                                            device_id=None,
                                            s=s, m=m,
                                            a=a, k=k,
                                            )
        elif 'AMArcFace' in head_type:
            self.classification = AMArcFace(dim_in, dim_out,
                                            device_id=None,
                                            s=s, m=m,
                                            a=a, k=k,
                                            )
        else:
            raise ValueError('Header type error!')

    def forward(self, x, label=None):
        feat = self.mouth_net(x)
        if self.training:
            assert label is not None
            cls = self.classification(feat, label)
            return feat, cls
        else:
            return feat

    def training_step(self, batch, batch_idx):
        opt = self.optimizers(use_pl_optimizer=True)
        img, label = batch

        mouth_feat, final_cls = self(img, label)

        cls_loss = self.cls_criterion(final_cls, label)

        opt.zero_grad()
        self.manual_backward(cls_loss)
        torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=5, norm_type=2)
        opt.step()

        ''' loss logging '''
        self.logging_dict({"cls_loss": cls_loss}, prefix="train / ")
        self.logging_lr()
        if batch_idx % 50 == 0 and self.local_rank == 0:
            print('loss=', cls_loss)

        return cls_loss

    def training_epoch_end(self, outputs):
        sch = self.lr_schedulers()
        sch.step()

        lr = -1
        opts = self.trainer.optimizers
        for opt in opts:
            for param_group in opt.param_groups:
                lr = param_group["lr"]
                break
        print('learning rate changed to %.6f' % lr)

    # def validation_step(self, batch, batch_idx):
    #     return self.test_step(batch, batch_idx)
    #
    # def validation_step_end(self, outputs):
    #     return self.test_step_end(outputs)
    #
    # def validation_epoch_end(self, outputs):
    #     return self.test_step_end(outputs)

    @staticmethod
    def save_tensor(tensor: torch.Tensor, path: str, b_idx: int = 0):
        tensor = (tensor + 1.) * 127.5
        img = tensor.permute(0, 2, 3, 1)[b_idx].cpu().numpy()
        from PIL import Image
        img_pil = Image.fromarray(img.astype(np.uint8))
        img_pil.save(path)

    def test_step(self, batch, batch_idx):
        img1, img2, same = batch
        feat1 = self.mouth_net(img1)
        feat2 = self.mouth_net(img2)
        return feat1, feat2, same

    def test_step_end(self, outputs):
        feat1, feat2, same = outputs
        feat1 = feat1.cpu().numpy()
        feat2 = feat2.cpu().numpy()
        same = same.cpu().numpy()

        feat1 = sklearn.preprocessing.normalize(feat1)
        feat2 = sklearn.preprocessing.normalize(feat2)

        predict_label = []
        num = feat1.shape[0]
        for i in range(num):
            dis_cos = cdist(feat1[i, None], feat2[i, None], metric='cosine')
            predict_label.append(dis_cos[0, 0])
        predict_label = np.array(predict_label)

        return {
            "pred": predict_label,
            "gt": same,
        }

    def test_epoch_end(self, outputs):
        print(outputs)
        pred, same = None, None
        for batch_output in outputs:
            if pred is None and same is None:
                pred = batch_output["pred"]
                same = batch_output["gt"]
            else:
                pred = np.concatenate([pred, batch_output["pred"]])
                same = np.concatenate([same, batch_output["gt"]])
        print(pred.shape, same.shape)

        fpr, tpr, threshold = roc_curve(same, pred)
        acc = tpr[np.argmin(np.abs(tpr - (1 - fpr)))]  # choose proper threshold
        print("=> verification finished, acc=%.4f" % (acc))

        ''' save pth '''
        pth_path = "./weights/fixer_net_casia_%s.pth" % ('_'.join((str(x) for x in self.crop_param)))
        self.mouth_net.save_backbone(pth_path)
        print("=> model save to %s" % pth_path)
        mouth_net = MouthNet(
            bisenet=None,
            feature_dim=self.dim_feature,
            crop_param=self.crop_param
        )
        mouth_net.load_backbone(pth_path)
        print("=> MouthNet pth checked")

        return acc

    def logging_dict(self, log_dict, prefix=None):
        for key, val in log_dict.items():
            if prefix is not None:
                key = prefix + key
            self.log(key, val)

    def logging_lr(self):
        opts = self.trainer.optimizers
        for idx, opt in enumerate(opts):
            lr = None
            for param_group in opt.param_groups:
                lr = param_group["lr"]
                break
            self.log(f"lr_{idx}", lr)

    def configure_optimizers(self):
        params = list(self.parameters())
        learning_rate = self.learning_rate / 512 * self.batch_size * torch.cuda.device_count()
        optimizer = torch.optim.SGD(params, lr=learning_rate,
            momentum=0.9, weight_decay=5e-4)
        print('lr is set as %.5f due to the global batch_size %d' % (learning_rate,
                                                                     self.batch_size * torch.cuda.device_count()))

        def lr_step_func(epoch):
            return ((epoch + 1) / (4 + 1)) ** 2 if epoch < 0 else 0.1 ** len(
                [m for m in [11, 17, 22] if m - 1 <= epoch])  # 0.1, 0.01, 0.001, 0.0001
        scheduler= torch.optim.lr_scheduler.LambdaLR(
            optimizer=optimizer, lr_lambda=lr_step_func)

        return [optimizer], [scheduler]

    def train_dataloader(self):
        dataset = MXFaceDataset(
            root_dir=self.rec_folder,
            crop_param=self.crop_param,
        )
        train_loader = DataLoader(
            dataset, self.batch_size, num_workers=24, shuffle=True, drop_last=True
        )
        return train_loader

    def val_dataloader(self):
        return self.test_dataloader()

    def test_dataloader(self):
        dataset = EvalDataset(
            rec_folder=self.rec_folder,
            target='lfw',
            crop_param=self.crop_param
        )
        test_loader = DataLoader(
            dataset, 20, num_workers=12, shuffle=False, drop_last=False
        )
        return test_loader


def start_train():
    import os
    import argparse
    import torch
    import pytorch_lightning as pl
    from pytorch_lightning.callbacks import ModelCheckpoint
    import wandb
    from pytorch_lightning.loggers import WandbLogger

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-g",
        "--gpus",
        type=str,
        default=None,
        help="Number of gpus to use (e.g. '0,1,2,3'). Will use all if not given.",
    )
    parser.add_argument("-n", "--name", type=str, required=True, help="Name of the run.")
    parser.add_argument("-pj", "--project", type=str, default="mouthnet", help="Name of the project.")

    parser.add_argument("-rp", "--resume_checkpoint_path",
                        type=str, default=None, help="path of checkpoint for resuming", )
    parser.add_argument("-p", "--saving_folder",
                        type=str, default="/apdcephfs/share_1290939/gavinyuan/out", help="saving folder", )
    parser.add_argument("--wandb_resume",
                        type=str, default=None, help="resume wandb logging from the input id", )

    parser.add_argument("--header_type", type=str, default="AMArcFace", help="loss type.")

    parser.add_argument("-bs", "--batch_size", type=int, default=128, help="bs.")
    parser.add_argument("-fs", "--fast_dev_run", type=bool, default=False, help="pytorch.lightning fast_dev_run")
    args = parser.parse_args()
    args.val_targets = []
    # args.rec_folder = "/gavin/datasets/msml/ms1m-retinaface"
    # num_classes = 93431
    args.rec_folder = "/gavin/datasets/msml/casia"
    num_classes = 10572

    save_path = os.path.join(args.saving_folder, args.name)
    os.makedirs(save_path, exist_ok=True)
    checkpoint_callback = ModelCheckpoint(
        dirpath=save_path,
        monitor="train / cls_loss",
        save_top_k=10,
        verbose=True,
        every_n_train_steps=200,
    )

    torch.cuda.empty_cache()
    mouth_net = MouthNetPL(
        num_classes=num_classes,
        batch_size=args.batch_size,
        dim_feature=128,
        rec_folder=args.rec_folder,
        header_type=args.header_type,
        crop=(28, 56, 84, 112)
    )

    if args.wandb_resume == None:
        resume = "allow"
        wandb_id = wandb.util.generate_id()
    else:
        resume = True
        wandb_id = args.wandb_resume
    logger = WandbLogger(
        project=args.project,
        entity="gavinyuan",
        name=args.name,
        resume=resume,
        id=wandb_id,
    )

    trainer = pl.Trainer(
        gpus=-1 if args.gpus is None else torch.cuda.device_count(),
        callbacks=[checkpoint_callback],
        logger=logger,
        weights_save_path=save_path,
        resume_from_checkpoint=args.resume_checkpoint_path,
        gradient_clip_val=0,
        max_epochs=25,
        num_sanity_val_steps=1,
        fast_dev_run=args.fast_dev_run,
        val_check_interval=50,
        progress_bar_refresh_rate=1,
        distributed_backend="ddp",
        benchmark=True,
    )
    trainer.fit(mouth_net)


if __name__ == "__main__":

    start_train()