Spaces:
Running
Running
gavinyuan
commited on
Commit
·
b9be4e6
1
Parent(s):
ee36df0
add: PIPNet, arcface
Browse filesupdate: gpu or cpu mode
This view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +151 -150
- inference/alignment.py +245 -0
- inference/landmark_smooth.py +117 -0
- inference/tricks.py +8 -8
- inference/utils.py +133 -0
- third_party/GPEN/infer_image.py +4 -2
- third_party/PIPNet/FaceBoxesV2/detector.py +39 -0
- third_party/PIPNet/FaceBoxesV2/faceboxes_detector.py +124 -0
- third_party/PIPNet/FaceBoxesV2/utils/__init__.py +0 -0
- third_party/PIPNet/FaceBoxesV2/utils/box_utils.py +276 -0
- third_party/PIPNet/FaceBoxesV2/utils/build.py +57 -0
- third_party/PIPNet/FaceBoxesV2/utils/config.py +14 -0
- third_party/PIPNet/FaceBoxesV2/utils/faceboxes.py +239 -0
- third_party/PIPNet/FaceBoxesV2/utils/make.sh +3 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/__init__.py +0 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.c +0 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.cpython-36m-x86_64-linux-gnu.so +0 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.cpython-38-x86_64-linux-gnu.so +0 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.pyx +163 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/gpu_nms.hpp +2 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/gpu_nms.pyx +31 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/nms_kernel.cu +144 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms/py_cpu_nms.py +38 -0
- third_party/PIPNet/FaceBoxesV2/utils/nms_wrapper.py +15 -0
- third_party/PIPNet/FaceBoxesV2/utils/prior_box.py +43 -0
- third_party/PIPNet/FaceBoxesV2/utils/timer.py +40 -0
- third_party/PIPNet/LICENSE +21 -0
- third_party/PIPNet/README.md +153 -0
- third_party/PIPNet/lib/data_utils.py +166 -0
- third_party/PIPNet/lib/data_utils_gssl.py +290 -0
- third_party/PIPNet/lib/demo.py +159 -0
- third_party/PIPNet/lib/demo_video.py +141 -0
- third_party/PIPNet/lib/functions.py +210 -0
- third_party/PIPNet/lib/functions_gssl.py +241 -0
- third_party/PIPNet/lib/mobilenetv3.py +233 -0
- third_party/PIPNet/lib/networks.py +415 -0
- third_party/PIPNet/lib/networks_gssl.py +80 -0
- third_party/PIPNet/lib/preprocess.py +554 -0
- third_party/PIPNet/lib/preprocess_gssl.py +544 -0
- third_party/PIPNet/lib/tools.py +174 -0
- third_party/PIPNet/lib/train.py +196 -0
- third_party/PIPNet/lib/train_gssl.py +303 -0
- third_party/PIPNet/requirements.txt +3 -0
- third_party/PIPNet/reverse_index.py +3338 -0
- third_party/PIPNet/run_demo.sh +11 -0
- third_party/PIPNet/run_test.sh +34 -0
- third_party/PIPNet/run_train.sh +33 -0
- weights/PIPNet/FaceBoxesV2.pth +3 -0
- weights/PIPNet/epoch59.pth +3 -0
- weights/arcface/mouth_net_28_56_84_112.pth +3 -0
app.py
CHANGED
@@ -15,156 +15,156 @@ from PIL import Image
|
|
15 |
import tqdm
|
16 |
|
17 |
from modules.networks.faceshifter import FSGenerator
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
from inference.tricks import Trick
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
#
|
74 |
-
#
|
75 |
-
#
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
|
169 |
|
170 |
def swap_image(
|
@@ -435,6 +435,7 @@ def swap_video_gr(img1, target_path, use_gpu=True, frames=9999999):
|
|
435 |
|
436 |
|
437 |
if __name__ == "__main__":
|
|
|
438 |
with gr.Blocks() as demo:
|
439 |
gr.Markdown("SuperSwap")
|
440 |
|
@@ -458,12 +459,12 @@ if __name__ == "__main__":
|
|
458 |
video_button = gr.Button("换脸")
|
459 |
image_button.click(
|
460 |
swap_image_gr,
|
461 |
-
inputs=[image1_input, image2_input, use_post, use_gpen],
|
462 |
outputs=image_output,
|
463 |
)
|
464 |
video_button.click(
|
465 |
swap_video_gr,
|
466 |
-
inputs=[image3_input, video_input],
|
467 |
outputs=video_output,
|
468 |
)
|
469 |
|
|
|
15 |
import tqdm
|
16 |
|
17 |
from modules.networks.faceshifter import FSGenerator
|
18 |
+
from inference.alignment import norm_crop, norm_crop_with_M, paste_back
|
19 |
+
from inference.utils import save, get_5_from_98, get_detector, get_lmk
|
20 |
+
from third_party.PIPNet.lib.tools import get_lmk_model, demo_image
|
21 |
+
from inference.landmark_smooth import kalman_filter_landmark, savgol_filter_landmark
|
22 |
from inference.tricks import Trick
|
23 |
|
24 |
+
make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))
|
25 |
+
|
26 |
+
|
27 |
+
fs_model_name = 'faceshifter'
|
28 |
+
in_size = 256
|
29 |
+
|
30 |
+
mouth_net_param = {
|
31 |
+
"use": True,
|
32 |
+
"feature_dim": 128,
|
33 |
+
"crop_param": (28, 56, 84, 112),
|
34 |
+
"weight_path": "../../modules/third_party/arcface/weights/mouth_net_28_56_84_112.pth",
|
35 |
+
}
|
36 |
+
trick = Trick()
|
37 |
+
|
38 |
+
T = transforms.Compose(
|
39 |
+
[
|
40 |
+
transforms.ToTensor(),
|
41 |
+
transforms.Normalize(0.5, 0.5),
|
42 |
+
]
|
43 |
+
)
|
44 |
+
tensor2pil_transform = transforms.ToPILImage()
|
45 |
+
|
46 |
+
|
47 |
+
def extract_generator(ckpt: str, pt: str):
|
48 |
+
print(f'[extract_generator] loading ckpt...')
|
49 |
+
from trainer.faceshifter.faceshifter_pl import FaceshifterPL512, FaceshifterPL
|
50 |
+
import yaml
|
51 |
+
with open(make_abs_path('../../trainer/faceshifter/config.yaml'), 'r') as f:
|
52 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
53 |
+
config['mouth_net'] = mouth_net_param
|
54 |
+
|
55 |
+
if in_size == 256:
|
56 |
+
net = FaceshifterPL(n_layers=3, num_D=3, config=config)
|
57 |
+
elif in_size == 512:
|
58 |
+
net = FaceshifterPL512(n_layers=3, num_D=3, config=config, verbose=False)
|
59 |
+
else:
|
60 |
+
raise ValueError('Not supported in_size.')
|
61 |
+
checkpoint = torch.load(ckpt, map_location="cpu", )
|
62 |
+
net.load_state_dict(checkpoint["state_dict"], strict=False)
|
63 |
+
net.eval()
|
64 |
+
|
65 |
+
G = net.generator
|
66 |
+
torch.save(G.state_dict(), pt)
|
67 |
+
print(f'[extract_generator] extracted from {ckpt}, pth saved to {pt}')
|
68 |
+
|
69 |
+
|
70 |
+
''' load model '''
|
71 |
+
if fs_model_name == 'faceshifter':
|
72 |
+
pt_path = make_abs_path("./weights/extracted/G_mouth1_t38.pth")
|
73 |
+
# pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_6.pth")
|
74 |
+
# ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_6/epoch=3-step=128999.ckpt"
|
75 |
+
# pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_4.pth")
|
76 |
+
# ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_4/epoch=2-step=185999.ckpt"
|
77 |
+
if not os.path.exists(pt_path) or 't512' in pt_path:
|
78 |
+
extract_generator(ckpt_path, pt_path)
|
79 |
+
fs_model = FSGenerator(
|
80 |
+
make_abs_path("./weights/arcface/ms1mv3_arcface_r100_fp16/backbone.pth"),
|
81 |
+
mouth_net_param=mouth_net_param,
|
82 |
+
in_size=in_size,
|
83 |
+
downup=in_size == 512,
|
84 |
+
)
|
85 |
+
fs_model.load_state_dict(torch.load(pt_path, "cpu"), strict=True)
|
86 |
+
fs_model.eval()
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def infer_batch_to_img(i_s, i_t, post: bool = False):
|
90 |
+
i_r = fs_model(i_s, i_t)[0] # x, id_vector, att
|
91 |
+
|
92 |
+
if post:
|
93 |
+
target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
|
94 |
+
target_hair_mask = trick.smooth_mask(target_hair_mask)
|
95 |
+
i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
|
96 |
+
i_r = trick.finetune_mouth(i_s, i_t, i_r) if in_size == 256 else i_r
|
97 |
+
|
98 |
+
img_r = trick.tensor_to_arr(i_r)[0]
|
99 |
+
return img_r
|
100 |
+
|
101 |
+
elif fs_model_name == 'simswap_triplet' or fs_model_name == 'simswap_vanilla':
|
102 |
+
from modules.networks.simswap import Generator_Adain_Upsample
|
103 |
+
sw_model = Generator_Adain_Upsample(
|
104 |
+
input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=False,
|
105 |
+
mouth_net_param=mouth_net_param
|
106 |
+
)
|
107 |
+
if fs_model_name == 'simswap_triplet':
|
108 |
+
pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_st5.pth")
|
109 |
+
ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
|
110 |
+
"simswap_triplet_5/epoch=12-step=782999.ckpt")
|
111 |
+
elif fs_model_name == 'simswap_vanilla':
|
112 |
+
pt_path = make_abs_path("../ffplus/extracted_ckpt/G_tmp_sv4_off.pth")
|
113 |
+
ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
|
114 |
+
"simswap_vanilla_4/epoch=694-step=1487999.ckpt")
|
115 |
+
else:
|
116 |
+
pt_path = None
|
117 |
+
ckpt_path = None
|
118 |
+
sw_model.load_state_dict(torch.load(pt_path, "cpu"), strict=False)
|
119 |
+
sw_model.eval()
|
120 |
+
fs_model = sw_model
|
121 |
+
|
122 |
+
from trainer.simswap.simswap_pl import SimSwapPL
|
123 |
+
import yaml
|
124 |
+
with open(make_abs_path('../../trainer/simswap/config.yaml'), 'r') as f:
|
125 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
126 |
+
config['mouth_net'] = mouth_net_param
|
127 |
+
net = SimSwapPL(config=config, use_official_arc='off' in pt_path)
|
128 |
+
|
129 |
+
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
130 |
+
net.load_state_dict(checkpoint["state_dict"], strict=False)
|
131 |
+
net.eval()
|
132 |
+
sw_mouth_net = net.mouth_net # maybe None
|
133 |
+
sw_netArc = net.netArc
|
134 |
+
fs_model = fs_model.cuda()
|
135 |
+
sw_mouth_net = sw_mouth_net.cuda() if sw_mouth_net is not None else sw_mouth_net
|
136 |
+
sw_netArc = sw_netArc.cuda()
|
137 |
+
|
138 |
+
@torch.no_grad()
|
139 |
+
def infer_batch_to_img(i_s, i_t, post: bool = False):
|
140 |
+
i_r = fs_model(source=i_s, target=i_t, net_arc=sw_netArc, mouth_net=sw_mouth_net,)
|
141 |
+
if post:
|
142 |
+
target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
|
143 |
+
target_hair_mask = trick.smooth_mask(target_hair_mask)
|
144 |
+
i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
|
145 |
+
i_r = i_r.clamp(-1, 1)
|
146 |
+
i_r = trick.tensor_to_arr(i_r)[0]
|
147 |
+
return i_r
|
148 |
+
|
149 |
+
elif fs_model_name == 'simswap_official':
|
150 |
+
from simswap.image_infer import SimSwapOfficialImageInfer
|
151 |
+
fs_model = SimSwapOfficialImageInfer()
|
152 |
+
pt_path = 'Simswap Official'
|
153 |
+
mouth_net_param = {
|
154 |
+
"use": False
|
155 |
+
}
|
156 |
+
|
157 |
+
@torch.no_grad()
|
158 |
+
def infer_batch_to_img(i_s, i_t):
|
159 |
+
i_r = fs_model.image_infer(source_tensor=i_s, target_tensor=i_t)
|
160 |
+
i_r = i_r.clamp(-1, 1)
|
161 |
+
return i_r
|
162 |
+
|
163 |
+
else:
|
164 |
+
raise ValueError('Not supported fs_model_name.')
|
165 |
+
|
166 |
+
|
167 |
+
print(f'[demo] model loaded from {pt_path}')
|
168 |
|
169 |
|
170 |
def swap_image(
|
|
|
435 |
|
436 |
|
437 |
if __name__ == "__main__":
|
438 |
+
use_gpu = torch.cuda.is_available()
|
439 |
with gr.Blocks() as demo:
|
440 |
gr.Markdown("SuperSwap")
|
441 |
|
|
|
459 |
video_button = gr.Button("换脸")
|
460 |
image_button.click(
|
461 |
swap_image_gr,
|
462 |
+
inputs=[image1_input, image2_input, use_post, use_gpen, use_gpu],
|
463 |
outputs=image_output,
|
464 |
)
|
465 |
video_button.click(
|
466 |
swap_video_gr,
|
467 |
+
inputs=[image3_input, video_input, use_gpu],
|
468 |
outputs=video_output,
|
469 |
)
|
470 |
|
inference/alignment.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from skimage import transform as trans
|
4 |
+
|
5 |
+
|
6 |
+
def get_center(points):
|
7 |
+
x = [p[0] for p in points]
|
8 |
+
y = [p[1] for p in points]
|
9 |
+
centroid = (sum(x) / len(points), sum(y) / len(points))
|
10 |
+
return np.array([centroid])
|
11 |
+
|
12 |
+
|
13 |
+
def extract_five_lmk(lmk):
|
14 |
+
x = lmk[..., :2]
|
15 |
+
left_eye = get_center(x[36:42])
|
16 |
+
right_eye = get_center(x[42:48])
|
17 |
+
nose = x[30:31]
|
18 |
+
left_mouth = x[48:49]
|
19 |
+
right_mouth = x[54:55]
|
20 |
+
x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0)
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
set1 = np.array(
|
25 |
+
[
|
26 |
+
[41.125, 50.75],
|
27 |
+
[71.75, 49.4375],
|
28 |
+
[49.875, 73.0625],
|
29 |
+
[45.9375, 87.9375],
|
30 |
+
[70.4375, 87.9375],
|
31 |
+
],
|
32 |
+
dtype=np.float32,
|
33 |
+
)
|
34 |
+
|
35 |
+
arcface_src = np.array(
|
36 |
+
[
|
37 |
+
[38.2946, 51.6963],
|
38 |
+
[73.5318, 51.5014],
|
39 |
+
[56.0252, 71.7366],
|
40 |
+
[41.5493, 92.3655],
|
41 |
+
[70.7299, 92.2041],
|
42 |
+
],
|
43 |
+
dtype=np.float32,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
ffhq = np.array(
|
48 |
+
[
|
49 |
+
[192.98138, 239.94708],
|
50 |
+
[318.90277, 240.1936],
|
51 |
+
[256.63416, 314.01935],
|
52 |
+
[201.26117, 371.41043],
|
53 |
+
[313.08905, 371.15118],
|
54 |
+
],
|
55 |
+
dtype=np.float32,
|
56 |
+
)
|
57 |
+
|
58 |
+
mtcnn = np.array(
|
59 |
+
[
|
60 |
+
[40.95041, 52.341854],
|
61 |
+
[70.90203, 52.17619],
|
62 |
+
[56.02142, 69.376114],
|
63 |
+
[43.716904, 86.910675],
|
64 |
+
[68.52042, 86.77348],
|
65 |
+
],
|
66 |
+
dtype=np.float32,
|
67 |
+
)
|
68 |
+
|
69 |
+
arcface_src = np.expand_dims(arcface_src, axis=0)
|
70 |
+
set1 = np.expand_dims(set1, axis=0)
|
71 |
+
ffhq = np.expand_dims(ffhq, axis=0)
|
72 |
+
mtcnn = np.expand_dims(mtcnn, axis=0)
|
73 |
+
|
74 |
+
|
75 |
+
# lmk is prediction; src is template
|
76 |
+
def estimate_norm(lmk, image_size=112, mode="set1"):
|
77 |
+
assert lmk.shape == (5, 2)
|
78 |
+
tform = trans.SimilarityTransform()
|
79 |
+
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
|
80 |
+
min_M = []
|
81 |
+
min_index = []
|
82 |
+
min_error = float("inf")
|
83 |
+
if mode == "arcface":
|
84 |
+
if image_size == 112:
|
85 |
+
src = arcface_src
|
86 |
+
else:
|
87 |
+
src = float(image_size) / 112 * arcface_src
|
88 |
+
elif mode == "set1":
|
89 |
+
if image_size == 112:
|
90 |
+
src = set1
|
91 |
+
else:
|
92 |
+
src = float(image_size) / 112 * set1
|
93 |
+
elif mode == "ffhq":
|
94 |
+
if image_size == 512:
|
95 |
+
src = ffhq
|
96 |
+
else:
|
97 |
+
src = float(image_size) / 512 * ffhq
|
98 |
+
elif mode == "mtcnn":
|
99 |
+
if image_size == 112:
|
100 |
+
src = mtcnn
|
101 |
+
else:
|
102 |
+
src = float(image_size) / 112 * mtcnn
|
103 |
+
else:
|
104 |
+
print("no mode like {}".format(mode))
|
105 |
+
exit()
|
106 |
+
for i in np.arange(src.shape[0]):
|
107 |
+
tform.estimate(lmk, src[i])
|
108 |
+
M = tform.params[0:2, :]
|
109 |
+
results = np.dot(M, lmk_tran.T)
|
110 |
+
results = results.T
|
111 |
+
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
|
112 |
+
# print(error)
|
113 |
+
if error < min_error:
|
114 |
+
min_error = error
|
115 |
+
min_M = M
|
116 |
+
min_index = i
|
117 |
+
return min_M, min_index
|
118 |
+
|
119 |
+
|
120 |
+
def estimate_norm_any(lmk_from, lmk_to, image_size=112):
|
121 |
+
tform = trans.SimilarityTransform()
|
122 |
+
lmk_tran = np.insert(lmk_from, 2, values=np.ones(5), axis=1)
|
123 |
+
min_M = []
|
124 |
+
min_index = []
|
125 |
+
min_error = float("inf")
|
126 |
+
src = lmk_to[np.newaxis, ...]
|
127 |
+
for i in np.arange(src.shape[0]):
|
128 |
+
tform.estimate(lmk_from, src[i])
|
129 |
+
M = tform.params[0:2, :]
|
130 |
+
results = np.dot(M, lmk_tran.T)
|
131 |
+
results = results.T
|
132 |
+
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
|
133 |
+
# print(error)
|
134 |
+
if error < min_error:
|
135 |
+
min_error = error
|
136 |
+
min_M = M
|
137 |
+
min_index = i
|
138 |
+
return min_M, min_index
|
139 |
+
|
140 |
+
|
141 |
+
def norm_crop(img, landmark, image_size=112, mode="arcface", borderValue=0.0):
|
142 |
+
M, pose_index = estimate_norm(landmark, image_size, mode)
|
143 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue)
|
144 |
+
return warped
|
145 |
+
|
146 |
+
|
147 |
+
def norm_crop_with_M(img, landmark, image_size=112, mode="arcface", borderValue=0.0):
|
148 |
+
M, pose_index = estimate_norm(landmark, image_size, mode)
|
149 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue)
|
150 |
+
return warped, M
|
151 |
+
|
152 |
+
|
153 |
+
def square_crop(im, S):
|
154 |
+
if im.shape[0] > im.shape[1]:
|
155 |
+
height = S
|
156 |
+
width = int(float(im.shape[1]) / im.shape[0] * S)
|
157 |
+
scale = float(S) / im.shape[0]
|
158 |
+
else:
|
159 |
+
width = S
|
160 |
+
height = int(float(im.shape[0]) / im.shape[1] * S)
|
161 |
+
scale = float(S) / im.shape[1]
|
162 |
+
resized_im = cv2.resize(im, (width, height))
|
163 |
+
det_im = np.zeros((S, S, 3), dtype=np.uint8)
|
164 |
+
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
|
165 |
+
return det_im, scale
|
166 |
+
|
167 |
+
|
168 |
+
def transform(data, center, output_size, scale, rotation):
|
169 |
+
scale_ratio = scale
|
170 |
+
rot = float(rotation) * np.pi / 180.0
|
171 |
+
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
|
172 |
+
t1 = trans.SimilarityTransform(scale=scale_ratio)
|
173 |
+
cx = center[0] * scale_ratio
|
174 |
+
cy = center[1] * scale_ratio
|
175 |
+
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
|
176 |
+
t3 = trans.SimilarityTransform(rotation=rot)
|
177 |
+
t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
|
178 |
+
t = t1 + t2 + t3 + t4
|
179 |
+
M = t.params[0:2]
|
180 |
+
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
|
181 |
+
return cropped, M
|
182 |
+
|
183 |
+
|
184 |
+
def trans_points2d(pts, M):
|
185 |
+
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
186 |
+
for i in range(pts.shape[0]):
|
187 |
+
pt = pts[i]
|
188 |
+
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
|
189 |
+
new_pt = np.dot(M, new_pt)
|
190 |
+
# print('new_pt', new_pt.shape, new_pt)
|
191 |
+
new_pts[i] = new_pt[0:2]
|
192 |
+
|
193 |
+
return new_pts
|
194 |
+
|
195 |
+
|
196 |
+
def trans_points3d(pts, M):
|
197 |
+
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
|
198 |
+
# print(scale)
|
199 |
+
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
200 |
+
for i in range(pts.shape[0]):
|
201 |
+
pt = pts[i]
|
202 |
+
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
|
203 |
+
new_pt = np.dot(M, new_pt)
|
204 |
+
# print('new_pt', new_pt.shape, new_pt)
|
205 |
+
new_pts[i][0:2] = new_pt[0:2]
|
206 |
+
new_pts[i][2] = pts[i][2] * scale
|
207 |
+
|
208 |
+
return new_pts
|
209 |
+
|
210 |
+
|
211 |
+
def trans_points(pts, M):
|
212 |
+
if pts.shape[1] == 2:
|
213 |
+
return trans_points2d(pts, M)
|
214 |
+
else:
|
215 |
+
return trans_points3d(pts, M)
|
216 |
+
|
217 |
+
|
218 |
+
def paste_back(img, mat, ori_img):
|
219 |
+
mat_rev = np.zeros([2, 3])
|
220 |
+
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
|
221 |
+
mat_rev[0][0] = mat[1][1] / div1
|
222 |
+
mat_rev[0][1] = -mat[0][1] / div1
|
223 |
+
mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
|
224 |
+
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
|
225 |
+
mat_rev[1][0] = mat[1][0] / div2
|
226 |
+
mat_rev[1][1] = -mat[0][0] / div2
|
227 |
+
mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2
|
228 |
+
|
229 |
+
img_shape = (ori_img.shape[1], ori_img.shape[0])
|
230 |
+
|
231 |
+
img = cv2.warpAffine(img, mat_rev, img_shape)
|
232 |
+
img_white = np.full((256, 256), 255, dtype=float)
|
233 |
+
img_white = cv2.warpAffine(img_white, mat_rev, img_shape)
|
234 |
+
img_white[img_white > 20] = 255
|
235 |
+
img_mask = img_white
|
236 |
+
kernel = np.ones((40, 40), np.uint8)
|
237 |
+
img_mask = cv2.erode(img_mask, kernel, iterations=2)
|
238 |
+
kernel_size = (20, 20)
|
239 |
+
blur_size = tuple(2 * j + 1 for j in kernel_size)
|
240 |
+
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
|
241 |
+
img_mask /= 255
|
242 |
+
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
|
243 |
+
ori_img = img_mask * img + (1 - img_mask) * ori_img
|
244 |
+
ori_img = ori_img.astype(np.uint8)
|
245 |
+
return ori_img
|
inference/landmark_smooth.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from scipy.signal import savgol_filter
|
4 |
+
|
5 |
+
def kalman_filter(inputs: np.array,
|
6 |
+
process_noise: float = 0.03,
|
7 |
+
measure_noise: float = 0.01,
|
8 |
+
):
|
9 |
+
""" OpenCV - Kalman Filter
|
10 |
+
https://blog.csdn.net/angelfish91/article/details/61768575
|
11 |
+
https://blog.csdn.net/qq_23981335/article/details/82968422
|
12 |
+
"""
|
13 |
+
assert inputs.ndim == 2, "inputs should be 2-dim np.array"
|
14 |
+
|
15 |
+
'''
|
16 |
+
它有3个输入参数,
|
17 |
+
dynam_params:状态空间的维数,这里为2;
|
18 |
+
measure_param:测量值的维数,这里也为2;
|
19 |
+
control_params:控制向量的维数,默认为0。由于这里该模型中并没有控制变量,因此也为0。
|
20 |
+
'''
|
21 |
+
kalman = cv2.KalmanFilter(2,2)
|
22 |
+
|
23 |
+
kalman.measurementMatrix = np.array([[1,0],[0,1]],np.float32)
|
24 |
+
kalman.transitionMatrix = np.array([[1,0],[0,1]], np.float32)
|
25 |
+
kalman.processNoiseCov = np.array([[1,0],[0,1]], np.float32) * process_noise
|
26 |
+
kalman.measurementNoiseCov = np.array([[1,0],[0,1]], np.float32) * measure_noise
|
27 |
+
'''
|
28 |
+
kalman.measurementNoiseCov为测量系统的协方差矩阵,方差越小,预测结果越接近测量值,
|
29 |
+
kalman.processNoiseCov为模型系统的噪声,噪声越大,预测结果越不稳定,越容易接近模型系统预测值,且单步变化越大,
|
30 |
+
相反,若噪声小,则预测结果与上个计算结果相差不大。
|
31 |
+
'''
|
32 |
+
|
33 |
+
kalman.statePre = np.array([[inputs[0][0]],
|
34 |
+
[inputs[0][1]]])
|
35 |
+
|
36 |
+
'''
|
37 |
+
Kalman Filtering
|
38 |
+
'''
|
39 |
+
outputs = np.zeros_like(inputs)
|
40 |
+
for i in range(len(inputs)):
|
41 |
+
mes = np.reshape(inputs[i,:],(2,1))
|
42 |
+
|
43 |
+
x = kalman.correct(mes)
|
44 |
+
|
45 |
+
y = kalman.predict()
|
46 |
+
outputs[i] = np.squeeze(y)
|
47 |
+
# print (kalman.statePost[0],kalman.statePost[1])
|
48 |
+
# print (kalman.statePre[0],kalman.statePre[1])
|
49 |
+
# print ('measurement:\t',mes[0],mes[1])
|
50 |
+
# print ('correct:\t',x[0],x[1])
|
51 |
+
# print ('predict:\t',y[0],y[1])
|
52 |
+
# print ('='*30)
|
53 |
+
|
54 |
+
return outputs
|
55 |
+
|
56 |
+
|
57 |
+
def kalman_filter_landmark(landmarks: np.array,
|
58 |
+
process_noise: float = 0.03,
|
59 |
+
measure_noise: float = 0.01,
|
60 |
+
):
|
61 |
+
""" Kalman Filter for Landmarks
|
62 |
+
:param process_noise: large means unstable and close to model predictions
|
63 |
+
:param measure_noise: small means close to measurement
|
64 |
+
"""
|
65 |
+
print('[Using Kalman Filter for Landmark Smoothing, process_noise=%f, measure_noise=%f]' %
|
66 |
+
(process_noise, measure_noise))
|
67 |
+
|
68 |
+
'''
|
69 |
+
landmarks: (#frames, key, xy)
|
70 |
+
'''
|
71 |
+
assert landmarks.ndim == 3, 'landmarks should be 3-dim np.array'
|
72 |
+
assert landmarks.dtype == 'float32', 'landmarks dtype should be float32'
|
73 |
+
|
74 |
+
for s1 in range(landmarks.shape[1]):
|
75 |
+
landmarks[:, s1] = kalman_filter(landmarks[:, s1],
|
76 |
+
process_noise,
|
77 |
+
measure_noise)
|
78 |
+
return landmarks
|
79 |
+
|
80 |
+
|
81 |
+
def savgol_filter_landmark(landmarks: np.array,
|
82 |
+
window_length: int = 25,
|
83 |
+
poly_order: int = 2,
|
84 |
+
):
|
85 |
+
""" Savgol Filter for Landmarks
|
86 |
+
https://blog.csdn.net/kaever/article/details/105520941
|
87 |
+
"""
|
88 |
+
print('[Using Savgol Filter for Landmark Smoothing, window_length=%d, poly_order=%d]' %
|
89 |
+
(window_length, poly_order))
|
90 |
+
|
91 |
+
'''
|
92 |
+
landmarks: (#frames, key, xy)
|
93 |
+
'''
|
94 |
+
assert landmarks.ndim == 3, 'landmarks should be 3-dim np.array'
|
95 |
+
assert landmarks.dtype == 'float32', 'landmarks dtype should be float32'
|
96 |
+
assert window_length % 2 == 1, 'window_length should be odd'
|
97 |
+
|
98 |
+
for s1 in range(landmarks.shape[1]):
|
99 |
+
for s2 in range(landmarks.shape[2]):
|
100 |
+
landmarks[:, s1, s2] = savgol_filter(landmarks[:, s1, s2],
|
101 |
+
window_length,
|
102 |
+
poly_order)
|
103 |
+
return landmarks
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
|
107 |
+
pos = np.array([
|
108 |
+
[10, 50],
|
109 |
+
[12, 49],
|
110 |
+
[11, 52],
|
111 |
+
[13, 52.2],
|
112 |
+
[12.9, 50]], np.float32)
|
113 |
+
|
114 |
+
print(pos)
|
115 |
+
pos_filtered = kalman_filter(pos)
|
116 |
+
print(pos)
|
117 |
+
print(pos_filtered)
|
inference/tricks.py
CHANGED
@@ -74,7 +74,7 @@ class Trick(object):
|
|
74 |
if not use_gpen:
|
75 |
return img_np
|
76 |
if self.gpen_model is None:
|
77 |
-
self.gpen_model = GPENImageInfer()
|
78 |
img_np = self.gpen_model.image_infer(img_np)
|
79 |
return img_np
|
80 |
|
@@ -139,22 +139,22 @@ class SoftErosion(nn.Module):
|
|
139 |
|
140 |
|
141 |
if torch.cuda.is_available():
|
142 |
-
|
143 |
else:
|
144 |
-
|
145 |
vgg_mean = torch.tensor([[[0.485]], [[0.456]], [[0.406]]],
|
146 |
-
requires_grad=False, device=
|
147 |
vgg_std = torch.tensor([[[0.229]], [[0.224]], [[0.225]]],
|
148 |
-
requires_grad=False, device=
|
149 |
def load_bisenet():
|
150 |
bisenet_model = BiSeNet(n_classes=19)
|
151 |
bisenet_model.load_state_dict(
|
152 |
-
torch.load(make_abs_path("../weights/79999_iter.pth",), map_location="cpu")
|
153 |
)
|
154 |
bisenet_model.eval()
|
155 |
-
bisenet_model = bisenet_model.to(
|
156 |
|
157 |
-
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).to(
|
158 |
print('[Global] bisenet loaded.')
|
159 |
return bisenet_model, smooth_mask
|
160 |
|
|
|
74 |
if not use_gpen:
|
75 |
return img_np
|
76 |
if self.gpen_model is None:
|
77 |
+
self.gpen_model = GPENImageInfer(device=global_device)
|
78 |
img_np = self.gpen_model.image_infer(img_np)
|
79 |
return img_np
|
80 |
|
|
|
139 |
|
140 |
|
141 |
if torch.cuda.is_available():
|
142 |
+
global_device = torch.device(0)
|
143 |
else:
|
144 |
+
global_device = torch.device('cpu')
|
145 |
vgg_mean = torch.tensor([[[0.485]], [[0.456]], [[0.406]]],
|
146 |
+
requires_grad=False, device=global_device)
|
147 |
vgg_std = torch.tensor([[[0.229]], [[0.224]], [[0.225]]],
|
148 |
+
requires_grad=False, device=global_device)
|
149 |
def load_bisenet():
|
150 |
bisenet_model = BiSeNet(n_classes=19)
|
151 |
bisenet_model.load_state_dict(
|
152 |
+
torch.load(make_abs_path("../weights/bisenet/79999_iter.pth",), map_location="cpu")
|
153 |
)
|
154 |
bisenet_model.eval()
|
155 |
+
bisenet_model = bisenet_model.to(global_device)
|
156 |
|
157 |
+
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).to(global_device)
|
158 |
print('[Global] bisenet loaded.')
|
159 |
return bisenet_model, smooth_mask
|
160 |
|
inference/utils.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
# from TDDFA_V2.FaceBoxes import FaceBoxes
|
5 |
+
# from TDDFA_V2.TDDFA import TDDFA
|
6 |
+
|
7 |
+
def get_5_from_98(lmk):
|
8 |
+
lefteye = (lmk[60] + lmk[64] + lmk[96]) / 3 # lmk[96]
|
9 |
+
righteye = (lmk[68] + lmk[72] + lmk[97]) / 3 # lmk[97]
|
10 |
+
nose = lmk[54]
|
11 |
+
leftmouth = lmk[76]
|
12 |
+
rightmouth = lmk[82]
|
13 |
+
return np.array([lefteye, righteye, nose, leftmouth, rightmouth])
|
14 |
+
|
15 |
+
|
16 |
+
def get_center(points):
|
17 |
+
x = [p[0] for p in points]
|
18 |
+
y = [p[1] for p in points]
|
19 |
+
centroid = (sum(x) / len(points), sum(y) / len(points))
|
20 |
+
return np.array([centroid])
|
21 |
+
|
22 |
+
|
23 |
+
def get_lmk(img, tddfa, face_boxes):
|
24 |
+
# 仅接受一个人的图像
|
25 |
+
boxes = face_boxes(img)
|
26 |
+
n = len(boxes)
|
27 |
+
if n < 1:
|
28 |
+
return None
|
29 |
+
param_lst, roi_box_lst = tddfa(img, boxes)
|
30 |
+
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=False)
|
31 |
+
x = ver_lst[0].transpose(1, 0)[..., :2]
|
32 |
+
left_eye = get_center(x[36:42])
|
33 |
+
right_eye = get_center(x[42:48])
|
34 |
+
nose = x[30:31]
|
35 |
+
left_mouth = x[48:49]
|
36 |
+
right_mouth = x[54:55]
|
37 |
+
x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0)
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
def get_landmark_once(img, gpu_mode=False):
|
42 |
+
tddfa = TDDFA(
|
43 |
+
gpu_mode=gpu_mode,
|
44 |
+
arch="resnet",
|
45 |
+
checkpoint_fp="./TDDFA_V2/weights/resnet22.pth",
|
46 |
+
bfm_fp="TDDFA_V2/configs/bfm_noneck_v3.pkl",
|
47 |
+
size=120,
|
48 |
+
num_params=62,
|
49 |
+
)
|
50 |
+
face_boxes = FaceBoxes()
|
51 |
+
boxes = face_boxes(img)
|
52 |
+
n = len(boxes)
|
53 |
+
if n < 1:
|
54 |
+
return None
|
55 |
+
param_lst, roi_box_lst = tddfa(img, boxes)
|
56 |
+
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=False)
|
57 |
+
x = ver_lst[0].transpose(1, 0)[..., :2]
|
58 |
+
left_eye = get_center(x[36:42])
|
59 |
+
right_eye = get_center(x[42:48])
|
60 |
+
nose = x[30:31]
|
61 |
+
left_mouth = x[48:49]
|
62 |
+
right_mouth = x[54:55]
|
63 |
+
x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0)
|
64 |
+
return x
|
65 |
+
|
66 |
+
|
67 |
+
def get_detector(gpu_mode=False):
|
68 |
+
tddfa = TDDFA(
|
69 |
+
gpu_mode=gpu_mode,
|
70 |
+
arch="resnet",
|
71 |
+
checkpoint_fp="./TDDFA_V2/weights/resnet22.pth",
|
72 |
+
bfm_fp="TDDFA_V2/configs/bfm_noneck_v3.pkl",
|
73 |
+
size=120,
|
74 |
+
num_params=62,
|
75 |
+
)
|
76 |
+
face_boxes = FaceBoxes()
|
77 |
+
return tddfa, face_boxes
|
78 |
+
|
79 |
+
|
80 |
+
def save(x, trick=None, use_post=False):
|
81 |
+
""" Paste img to ori_img """
|
82 |
+
img, mat, ori_img, save_path, img_mask = x
|
83 |
+
if mat is None:
|
84 |
+
print('[Warning] mat is None.')
|
85 |
+
ori_img = ori_img.astype(np.uint8)
|
86 |
+
Image.fromarray(ori_img).save(save_path)
|
87 |
+
return
|
88 |
+
|
89 |
+
H, W = img.shape[0], img.shape[1] # (256,256) or (512,512)
|
90 |
+
mat_rev = np.zeros([2, 3])
|
91 |
+
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
|
92 |
+
mat_rev[0][0] = mat[1][1] / div1
|
93 |
+
mat_rev[0][1] = -mat[0][1] / div1
|
94 |
+
mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
|
95 |
+
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
|
96 |
+
mat_rev[1][0] = mat[1][0] / div2
|
97 |
+
mat_rev[1][1] = -mat[0][0] / div2
|
98 |
+
mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2
|
99 |
+
|
100 |
+
img_shape = (ori_img.shape[1], ori_img.shape[0]) # (h,w)
|
101 |
+
|
102 |
+
img = cv2.warpAffine(img, mat_rev, img_shape)
|
103 |
+
|
104 |
+
if img_mask is None:
|
105 |
+
''' hanbang version of paste masks '''
|
106 |
+
img_white = np.full((H, W), 255, dtype=float)
|
107 |
+
img_white = cv2.warpAffine(img_white, mat_rev, img_shape)
|
108 |
+
img_white[img_white > 20] = 255
|
109 |
+
img_mask = img_white
|
110 |
+
|
111 |
+
kernel = np.ones((40, 40), np.uint8)
|
112 |
+
img_mask = cv2.erode(img_mask, kernel, iterations=2)
|
113 |
+
|
114 |
+
kernel_size = (20, 20)
|
115 |
+
blur_size = tuple(2 * j + 1 for j in kernel_size)
|
116 |
+
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
|
117 |
+
img_mask /= 255
|
118 |
+
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
|
119 |
+
else:
|
120 |
+
''' yuange version of paste masks '''
|
121 |
+
img_mask = cv2.warpAffine(img_mask, mat_rev, img_shape)
|
122 |
+
img_mask = np.expand_dims(img_mask, axis=-1)
|
123 |
+
|
124 |
+
ori_img = img_mask * img + (1 - img_mask) * ori_img
|
125 |
+
ori_img = ori_img.astype(np.uint8)
|
126 |
+
|
127 |
+
if trick is not None:
|
128 |
+
ori_img = trick.gpen(ori_img, use_post)
|
129 |
+
|
130 |
+
Image.fromarray(ori_img).save(save_path)
|
131 |
+
|
132 |
+
# img_mask = np.array((img_mask * 255), dtype=np.uint8).squeeze()
|
133 |
+
# Image.fromarray(img_mask).save('img_mask.jpg')
|
third_party/GPEN/infer_image.py
CHANGED
@@ -14,7 +14,7 @@ make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.
|
|
14 |
|
15 |
|
16 |
class GPENImageInfer(object):
|
17 |
-
def __init__(self):
|
18 |
super(GPENImageInfer, self).__init__()
|
19 |
|
20 |
model = {
|
@@ -32,6 +32,7 @@ class GPENImageInfer(object):
|
|
32 |
model=model["name"],
|
33 |
channel_multiplier=model["channel_multiplier"],
|
34 |
narrow=model["narrow"],
|
|
|
35 |
)
|
36 |
self.faceenhancer = faceenhancer
|
37 |
|
@@ -77,6 +78,7 @@ class GPENImageInfer(object):
|
|
77 |
:return: out_batch: (N,RGB,H,W), in [-1,1]
|
78 |
"""
|
79 |
B, C, H, W = in_batch.shape
|
|
|
80 |
|
81 |
in_batch = ((in_batch + 1.) * 127.5).permute(0, 2, 3, 1)
|
82 |
in_batch = in_batch.cpu().numpy().astype(np.uint8) # (N,H,W,RGB), in [0,255]
|
@@ -89,7 +91,7 @@ class GPENImageInfer(object):
|
|
89 |
out_batch[b_idx] = out_img[:, :, ::-1]
|
90 |
if save_batch_idx is not None and b_idx == save_batch_idx:
|
91 |
cv2.imwrite(os.path.join(save_folder, save_name), out_img)
|
92 |
-
out_batch = torch.FloatTensor(out_batch).
|
93 |
out_batch = out_batch / 127.5 - 1. # (N,H,W,RGB)
|
94 |
out_batch = out_batch.permute(0, 3, 1, 2) # (N,RGB,H,W)
|
95 |
out_batch = out_batch.clamp(-1, 1)
|
|
|
14 |
|
15 |
|
16 |
class GPENImageInfer(object):
|
17 |
+
def __init__(self, device):
|
18 |
super(GPENImageInfer, self).__init__()
|
19 |
|
20 |
model = {
|
|
|
32 |
model=model["name"],
|
33 |
channel_multiplier=model["channel_multiplier"],
|
34 |
narrow=model["narrow"],
|
35 |
+
device=device,
|
36 |
)
|
37 |
self.faceenhancer = faceenhancer
|
38 |
|
|
|
78 |
:return: out_batch: (N,RGB,H,W), in [-1,1]
|
79 |
"""
|
80 |
B, C, H, W = in_batch.shape
|
81 |
+
device = in_batch.device
|
82 |
|
83 |
in_batch = ((in_batch + 1.) * 127.5).permute(0, 2, 3, 1)
|
84 |
in_batch = in_batch.cpu().numpy().astype(np.uint8) # (N,H,W,RGB), in [0,255]
|
|
|
91 |
out_batch[b_idx] = out_img[:, :, ::-1]
|
92 |
if save_batch_idx is not None and b_idx == save_batch_idx:
|
93 |
cv2.imwrite(os.path.join(save_folder, save_name), out_img)
|
94 |
+
out_batch = torch.FloatTensor(out_batch).to(device)
|
95 |
out_batch = out_batch / 127.5 - 1. # (N,H,W,RGB)
|
96 |
out_batch = out_batch.permute(0, 3, 1, 2) # (N,RGB,H,W)
|
97 |
out_batch = out_batch.clamp(-1, 1)
|
third_party/PIPNet/FaceBoxesV2/detector.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
class Detector(object):
|
4 |
+
def __init__(self, model_arch, model_weights):
|
5 |
+
self.model_arch = model_arch
|
6 |
+
self.model_weights = model_weights
|
7 |
+
|
8 |
+
def detect(self, image, thresh):
|
9 |
+
raise NotImplementedError
|
10 |
+
|
11 |
+
def crop(self, image, detections):
|
12 |
+
crops = []
|
13 |
+
for det in detections:
|
14 |
+
xmin = max(det[2], 0)
|
15 |
+
ymin = max(det[3], 0)
|
16 |
+
width = det[4]
|
17 |
+
height = det[5]
|
18 |
+
xmax = min(xmin+width, image.shape[1])
|
19 |
+
ymax = min(ymin+height, image.shape[0])
|
20 |
+
cut = image[ymin:ymax, xmin:xmax,:]
|
21 |
+
crops.append(cut)
|
22 |
+
|
23 |
+
return crops
|
24 |
+
|
25 |
+
def draw(self, image, detections, im_scale=None):
|
26 |
+
if im_scale is not None:
|
27 |
+
image = cv2.resize(image, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
|
28 |
+
detections = [[det[0],det[1],int(det[2]*im_scale),int(det[3]*im_scale),int(det[4]*im_scale),int(det[5]*im_scale)] for det in detections]
|
29 |
+
|
30 |
+
for det in detections:
|
31 |
+
xmin = det[2]
|
32 |
+
ymin = det[3]
|
33 |
+
width = det[4]
|
34 |
+
height = det[5]
|
35 |
+
xmax = xmin + width
|
36 |
+
ymax = ymin + height
|
37 |
+
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
|
38 |
+
|
39 |
+
return image
|
third_party/PIPNet/FaceBoxesV2/faceboxes_detector.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from third_party.PIPNet.FaceBoxesV2.detector import Detector
|
2 |
+
import cv2, os
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from third_party.PIPNet.FaceBoxesV2.utils.config import cfg
|
7 |
+
from third_party.PIPNet.FaceBoxesV2.utils.prior_box import PriorBox
|
8 |
+
from third_party.PIPNet.FaceBoxesV2.utils.nms_wrapper import nms
|
9 |
+
from third_party.PIPNet.FaceBoxesV2.utils.faceboxes import FaceBoxesV2
|
10 |
+
from third_party.PIPNet.FaceBoxesV2.utils.box_utils import decode
|
11 |
+
import time
|
12 |
+
|
13 |
+
|
14 |
+
class FaceBoxesDetector(Detector):
|
15 |
+
def __init__(self, model_arch, model_weights, use_gpu, device):
|
16 |
+
super().__init__(model_arch, model_weights)
|
17 |
+
self.name = "FaceBoxesDetector"
|
18 |
+
self.net = FaceBoxesV2(
|
19 |
+
phase="test", size=None, num_classes=2
|
20 |
+
) # initialize detector
|
21 |
+
self.use_gpu = use_gpu
|
22 |
+
self.device = device
|
23 |
+
|
24 |
+
state_dict = torch.load(self.model_weights, map_location=self.device)
|
25 |
+
# create new OrderedDict that does not contain `module.`
|
26 |
+
from collections import OrderedDict
|
27 |
+
|
28 |
+
new_state_dict = OrderedDict()
|
29 |
+
for k, v in state_dict.items():
|
30 |
+
name = k[7:] # remove `module.`
|
31 |
+
new_state_dict[name] = v
|
32 |
+
# load params
|
33 |
+
self.net.load_state_dict(new_state_dict)
|
34 |
+
self.net = self.net.to(self.device)
|
35 |
+
self.net.eval()
|
36 |
+
|
37 |
+
def detect(self, image, thresh=0.6, im_scale=None):
|
38 |
+
# auto resize for large images
|
39 |
+
if im_scale is None:
|
40 |
+
height, width, _ = image.shape
|
41 |
+
if min(height, width) > 600:
|
42 |
+
im_scale = 600.0 / min(height, width)
|
43 |
+
else:
|
44 |
+
im_scale = 1
|
45 |
+
image_scale = cv2.resize(
|
46 |
+
image, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR
|
47 |
+
)
|
48 |
+
|
49 |
+
scale = torch.Tensor(
|
50 |
+
[
|
51 |
+
image_scale.shape[1],
|
52 |
+
image_scale.shape[0],
|
53 |
+
image_scale.shape[1],
|
54 |
+
image_scale.shape[0],
|
55 |
+
]
|
56 |
+
)
|
57 |
+
image_scale = (
|
58 |
+
torch.from_numpy(image_scale.transpose(2, 0, 1)).to(self.device).int()
|
59 |
+
)
|
60 |
+
mean_tmp = torch.IntTensor([104, 117, 123]).to(self.device)
|
61 |
+
mean_tmp = mean_tmp.unsqueeze(1).unsqueeze(2)
|
62 |
+
image_scale -= mean_tmp
|
63 |
+
image_scale = image_scale.float().unsqueeze(0)
|
64 |
+
scale = scale.to(self.device)
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
out = self.net(image_scale)
|
68 |
+
# priorbox = PriorBox(cfg, out[2], (image_scale.size()[2], image_scale.size()[3]), phase='test')
|
69 |
+
priorbox = PriorBox(
|
70 |
+
cfg, image_size=(image_scale.size()[2], image_scale.size()[3])
|
71 |
+
)
|
72 |
+
priors = priorbox.forward()
|
73 |
+
priors = priors.to(self.device)
|
74 |
+
loc, conf = out
|
75 |
+
prior_data = priors.data
|
76 |
+
boxes = decode(loc.data.squeeze(0), prior_data, cfg["variance"])
|
77 |
+
boxes = boxes * scale
|
78 |
+
boxes = boxes.cpu().numpy()
|
79 |
+
scores = conf.data.cpu().numpy()[:, 1]
|
80 |
+
|
81 |
+
# ignore low scores
|
82 |
+
inds = np.where(scores > thresh)[0]
|
83 |
+
boxes = boxes[inds]
|
84 |
+
scores = scores[inds]
|
85 |
+
|
86 |
+
# keep top-K before NMS
|
87 |
+
order = scores.argsort()[::-1][:5000]
|
88 |
+
boxes = boxes[order]
|
89 |
+
scores = scores[order]
|
90 |
+
|
91 |
+
# do NMS
|
92 |
+
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(
|
93 |
+
np.float32, copy=False
|
94 |
+
)
|
95 |
+
keep = nms(dets, 0.3)
|
96 |
+
dets = dets[keep, :]
|
97 |
+
|
98 |
+
dets = dets[:750, :]
|
99 |
+
detections_scale = []
|
100 |
+
for i in range(dets.shape[0]):
|
101 |
+
xmin = int(dets[i][0])
|
102 |
+
ymin = int(dets[i][1])
|
103 |
+
xmax = int(dets[i][2])
|
104 |
+
ymax = int(dets[i][3])
|
105 |
+
score = dets[i][4]
|
106 |
+
width = xmax - xmin
|
107 |
+
height = ymax - ymin
|
108 |
+
detections_scale.append(["face", score, xmin, ymin, width, height])
|
109 |
+
|
110 |
+
# adapt bboxes to the original image size
|
111 |
+
if len(detections_scale) > 0:
|
112 |
+
detections_scale = [
|
113 |
+
[
|
114 |
+
det[0],
|
115 |
+
det[1],
|
116 |
+
int(det[2] / im_scale),
|
117 |
+
int(det[3] / im_scale),
|
118 |
+
int(det[4] / im_scale),
|
119 |
+
int(det[5] / im_scale),
|
120 |
+
]
|
121 |
+
for det in detections_scale
|
122 |
+
]
|
123 |
+
|
124 |
+
return detections_scale, im_scale
|
third_party/PIPNet/FaceBoxesV2/utils/__init__.py
ADDED
File without changes
|
third_party/PIPNet/FaceBoxesV2/utils/box_utils.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def point_form(boxes):
|
6 |
+
""" Convert prior_boxes to (xmin, ymin, xmax, ymax)
|
7 |
+
representation for comparison to point form ground truth data.
|
8 |
+
Args:
|
9 |
+
boxes: (tensor) center-size default boxes from priorbox layers.
|
10 |
+
Return:
|
11 |
+
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
12 |
+
"""
|
13 |
+
return torch.cat((boxes[:, :2] - boxes[:, 2:]/2, # xmin, ymin
|
14 |
+
boxes[:, :2] + boxes[:, 2:]/2), 1) # xmax, ymax
|
15 |
+
|
16 |
+
|
17 |
+
def center_size(boxes):
|
18 |
+
""" Convert prior_boxes to (cx, cy, w, h)
|
19 |
+
representation for comparison to center-size form ground truth data.
|
20 |
+
Args:
|
21 |
+
boxes: (tensor) point_form boxes
|
22 |
+
Return:
|
23 |
+
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
24 |
+
"""
|
25 |
+
return torch.cat((boxes[:, 2:] + boxes[:, :2])/2, # cx, cy
|
26 |
+
boxes[:, 2:] - boxes[:, :2], 1) # w, h
|
27 |
+
|
28 |
+
|
29 |
+
def intersect(box_a, box_b):
|
30 |
+
""" We resize both tensors to [A,B,2] without new malloc:
|
31 |
+
[A,2] -> [A,1,2] -> [A,B,2]
|
32 |
+
[B,2] -> [1,B,2] -> [A,B,2]
|
33 |
+
Then we compute the area of intersect between box_a and box_b.
|
34 |
+
Args:
|
35 |
+
box_a: (tensor) bounding boxes, Shape: [A,4].
|
36 |
+
box_b: (tensor) bounding boxes, Shape: [B,4].
|
37 |
+
Return:
|
38 |
+
(tensor) intersection area, Shape: [A,B].
|
39 |
+
"""
|
40 |
+
A = box_a.size(0)
|
41 |
+
B = box_b.size(0)
|
42 |
+
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
|
43 |
+
box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
|
44 |
+
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
|
45 |
+
box_b[:, :2].unsqueeze(0).expand(A, B, 2))
|
46 |
+
inter = torch.clamp((max_xy - min_xy), min=0)
|
47 |
+
return inter[:, :, 0] * inter[:, :, 1]
|
48 |
+
|
49 |
+
|
50 |
+
def jaccard(box_a, box_b):
|
51 |
+
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
|
52 |
+
is simply the intersection over union of two boxes. Here we operate on
|
53 |
+
ground truth boxes and default boxes.
|
54 |
+
E.g.:
|
55 |
+
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
|
56 |
+
Args:
|
57 |
+
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
|
58 |
+
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
|
59 |
+
Return:
|
60 |
+
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
|
61 |
+
"""
|
62 |
+
inter = intersect(box_a, box_b)
|
63 |
+
area_a = ((box_a[:, 2]-box_a[:, 0]) *
|
64 |
+
(box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
|
65 |
+
area_b = ((box_b[:, 2]-box_b[:, 0]) *
|
66 |
+
(box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
|
67 |
+
union = area_a + area_b - inter
|
68 |
+
return inter / union # [A,B]
|
69 |
+
|
70 |
+
|
71 |
+
def matrix_iou(a, b):
|
72 |
+
"""
|
73 |
+
return iou of a and b, numpy version for data augenmentation
|
74 |
+
"""
|
75 |
+
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
76 |
+
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
77 |
+
|
78 |
+
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
|
79 |
+
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
80 |
+
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
|
81 |
+
return area_i / (area_a[:, np.newaxis] + area_b - area_i)
|
82 |
+
|
83 |
+
|
84 |
+
def matrix_iof(a, b):
|
85 |
+
"""
|
86 |
+
return iof of a and b, numpy version for data augenmentation
|
87 |
+
"""
|
88 |
+
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
89 |
+
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
90 |
+
|
91 |
+
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
|
92 |
+
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
93 |
+
return area_i / np.maximum(area_a[:, np.newaxis], 1)
|
94 |
+
|
95 |
+
|
96 |
+
def match(threshold, truths, priors, variances, labels, loc_t, conf_t, idx):
|
97 |
+
"""Match each prior box with the ground truth box of the highest jaccard
|
98 |
+
overlap, encode the bounding boxes, then return the matched indices
|
99 |
+
corresponding to both confidence and location preds.
|
100 |
+
Args:
|
101 |
+
threshold: (float) The overlap threshold used when mathing boxes.
|
102 |
+
truths: (tensor) Ground truth boxes, Shape: [num_obj, num_priors].
|
103 |
+
priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
|
104 |
+
variances: (tensor) Variances corresponding to each prior coord,
|
105 |
+
Shape: [num_priors, 4].
|
106 |
+
labels: (tensor) All the class labels for the image, Shape: [num_obj].
|
107 |
+
loc_t: (tensor) Tensor to be filled w/ endcoded location targets.
|
108 |
+
conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
|
109 |
+
idx: (int) current batch index
|
110 |
+
Return:
|
111 |
+
The matched indices corresponding to 1)location and 2)confidence preds.
|
112 |
+
"""
|
113 |
+
# jaccard index
|
114 |
+
overlaps = jaccard(
|
115 |
+
truths,
|
116 |
+
point_form(priors)
|
117 |
+
)
|
118 |
+
# (Bipartite Matching)
|
119 |
+
# [1,num_objects] best prior for each ground truth
|
120 |
+
best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
|
121 |
+
|
122 |
+
# ignore hard gt
|
123 |
+
valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
|
124 |
+
best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
|
125 |
+
if best_prior_idx_filter.shape[0] <= 0:
|
126 |
+
loc_t[idx] = 0
|
127 |
+
conf_t[idx] = 0
|
128 |
+
return
|
129 |
+
|
130 |
+
# [1,num_priors] best ground truth for each prior
|
131 |
+
best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
|
132 |
+
best_truth_idx.squeeze_(0)
|
133 |
+
best_truth_overlap.squeeze_(0)
|
134 |
+
best_prior_idx.squeeze_(1)
|
135 |
+
best_prior_idx_filter.squeeze_(1)
|
136 |
+
best_prior_overlap.squeeze_(1)
|
137 |
+
best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
|
138 |
+
# NoTODO refactor: index best_prior_idx with long tensor
|
139 |
+
# ensure every gt matches with its prior of max overlap
|
140 |
+
for j in range(best_prior_idx.size(0)):
|
141 |
+
best_truth_idx[best_prior_idx[j]] = j
|
142 |
+
matches = truths[best_truth_idx] # Shape: [num_priors,4]
|
143 |
+
conf = labels[best_truth_idx] # Shape: [num_priors]
|
144 |
+
conf[best_truth_overlap < threshold] = 0 # label as background
|
145 |
+
loc = encode(matches, priors, variances)
|
146 |
+
loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
|
147 |
+
conf_t[idx] = conf # [num_priors] top class label for each prior
|
148 |
+
|
149 |
+
|
150 |
+
def encode(matched, priors, variances):
|
151 |
+
"""Encode the variances from the priorbox layers into the ground truth boxes
|
152 |
+
we have matched (based on jaccard overlap) with the prior boxes.
|
153 |
+
Args:
|
154 |
+
matched: (tensor) Coords of ground truth for each prior in point-form
|
155 |
+
Shape: [num_priors, 4].
|
156 |
+
priors: (tensor) Prior boxes in center-offset form
|
157 |
+
Shape: [num_priors,4].
|
158 |
+
variances: (list[float]) Variances of priorboxes
|
159 |
+
Return:
|
160 |
+
encoded boxes (tensor), Shape: [num_priors, 4]
|
161 |
+
"""
|
162 |
+
|
163 |
+
# dist b/t match center and prior's center
|
164 |
+
g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2]
|
165 |
+
# encode variance
|
166 |
+
g_cxcy /= (variances[0] * priors[:, 2:])
|
167 |
+
# match wh / prior wh
|
168 |
+
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
|
169 |
+
g_wh = torch.log(g_wh) / variances[1]
|
170 |
+
# return target for smooth_l1_loss
|
171 |
+
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
|
172 |
+
|
173 |
+
|
174 |
+
# Adapted from https://github.com/Hakuyume/chainer-ssd
|
175 |
+
def decode(loc, priors, variances):
|
176 |
+
"""Decode locations from predictions using priors to undo
|
177 |
+
the encoding we did for offset regression at train time.
|
178 |
+
Args:
|
179 |
+
loc (tensor): location predictions for loc layers,
|
180 |
+
Shape: [num_priors,4]
|
181 |
+
priors (tensor): Prior boxes in center-offset form.
|
182 |
+
Shape: [num_priors,4].
|
183 |
+
variances: (list[float]) Variances of priorboxes
|
184 |
+
Return:
|
185 |
+
decoded bounding box predictions
|
186 |
+
"""
|
187 |
+
|
188 |
+
boxes = torch.cat((
|
189 |
+
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
|
190 |
+
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
|
191 |
+
boxes[:, :2] -= boxes[:, 2:] / 2
|
192 |
+
boxes[:, 2:] += boxes[:, :2]
|
193 |
+
return boxes
|
194 |
+
|
195 |
+
|
196 |
+
def log_sum_exp(x):
|
197 |
+
"""Utility function for computing log_sum_exp while determining
|
198 |
+
This will be used to determine unaveraged confidence loss across
|
199 |
+
all examples in a batch.
|
200 |
+
Args:
|
201 |
+
x (Variable(tensor)): conf_preds from conf layers
|
202 |
+
"""
|
203 |
+
x_max = x.data.max()
|
204 |
+
return torch.log(torch.sum(torch.exp(x-x_max), 1, keepdim=True)) + x_max
|
205 |
+
|
206 |
+
|
207 |
+
# Original author: Francisco Massa:
|
208 |
+
# https://github.com/fmassa/object-detection.torch
|
209 |
+
# Ported to PyTorch by Max deGroot (02/01/2017)
|
210 |
+
def nms(boxes, scores, overlap=0.5, top_k=200):
|
211 |
+
"""Apply non-maximum suppression at test time to avoid detecting too many
|
212 |
+
overlapping bounding boxes for a given object.
|
213 |
+
Args:
|
214 |
+
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
|
215 |
+
scores: (tensor) The class predscores for the img, Shape:[num_priors].
|
216 |
+
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
|
217 |
+
top_k: (int) The Maximum number of box preds to consider.
|
218 |
+
Return:
|
219 |
+
The indices of the kept boxes with respect to num_priors.
|
220 |
+
"""
|
221 |
+
|
222 |
+
keep = torch.Tensor(scores.size(0)).fill_(0).long()
|
223 |
+
if boxes.numel() == 0:
|
224 |
+
return keep
|
225 |
+
x1 = boxes[:, 0]
|
226 |
+
y1 = boxes[:, 1]
|
227 |
+
x2 = boxes[:, 2]
|
228 |
+
y2 = boxes[:, 3]
|
229 |
+
area = torch.mul(x2 - x1, y2 - y1)
|
230 |
+
v, idx = scores.sort(0) # sort in ascending order
|
231 |
+
# I = I[v >= 0.01]
|
232 |
+
idx = idx[-top_k:] # indices of the top-k largest vals
|
233 |
+
xx1 = boxes.new()
|
234 |
+
yy1 = boxes.new()
|
235 |
+
xx2 = boxes.new()
|
236 |
+
yy2 = boxes.new()
|
237 |
+
w = boxes.new()
|
238 |
+
h = boxes.new()
|
239 |
+
|
240 |
+
# keep = torch.Tensor()
|
241 |
+
count = 0
|
242 |
+
while idx.numel() > 0:
|
243 |
+
i = idx[-1] # index of current largest val
|
244 |
+
# keep.append(i)
|
245 |
+
keep[count] = i
|
246 |
+
count += 1
|
247 |
+
if idx.size(0) == 1:
|
248 |
+
break
|
249 |
+
idx = idx[:-1] # remove kept element from view
|
250 |
+
# load bboxes of next highest vals
|
251 |
+
torch.index_select(x1, 0, idx, out=xx1)
|
252 |
+
torch.index_select(y1, 0, idx, out=yy1)
|
253 |
+
torch.index_select(x2, 0, idx, out=xx2)
|
254 |
+
torch.index_select(y2, 0, idx, out=yy2)
|
255 |
+
# store element-wise max with next highest score
|
256 |
+
xx1 = torch.clamp(xx1, min=x1[i])
|
257 |
+
yy1 = torch.clamp(yy1, min=y1[i])
|
258 |
+
xx2 = torch.clamp(xx2, max=x2[i])
|
259 |
+
yy2 = torch.clamp(yy2, max=y2[i])
|
260 |
+
w.resize_as_(xx2)
|
261 |
+
h.resize_as_(yy2)
|
262 |
+
w = xx2 - xx1
|
263 |
+
h = yy2 - yy1
|
264 |
+
# check sizes of xx1 and xx2.. after each iteration
|
265 |
+
w = torch.clamp(w, min=0.0)
|
266 |
+
h = torch.clamp(h, min=0.0)
|
267 |
+
inter = w*h
|
268 |
+
# IoU = i / (area(a) + area(b) - i)
|
269 |
+
rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
|
270 |
+
union = (rem_areas - inter) + area[i]
|
271 |
+
IoU = inter/union # store result in iou
|
272 |
+
# keep only elements with an IoU <= overlap
|
273 |
+
idx = idx[IoU.le(overlap)]
|
274 |
+
return keep, count
|
275 |
+
|
276 |
+
|
third_party/PIPNet/FaceBoxesV2/utils/build.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# Fast R-CNN
|
5 |
+
# Copyright (c) 2015 Microsoft
|
6 |
+
# Licensed under The MIT License [see LICENSE for details]
|
7 |
+
# Written by Ross Girshick
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import os
|
11 |
+
from os.path import join as pjoin
|
12 |
+
import numpy as np
|
13 |
+
from distutils.core import setup
|
14 |
+
from distutils.extension import Extension
|
15 |
+
from Cython.Distutils import build_ext
|
16 |
+
|
17 |
+
|
18 |
+
def find_in_path(name, path):
|
19 |
+
"Find a file in a search path"
|
20 |
+
# adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
|
21 |
+
for dir in path.split(os.pathsep):
|
22 |
+
binpath = pjoin(dir, name)
|
23 |
+
if os.path.exists(binpath):
|
24 |
+
return os.path.abspath(binpath)
|
25 |
+
return None
|
26 |
+
|
27 |
+
|
28 |
+
# Obtain the numpy include directory. This logic works across numpy versions.
|
29 |
+
try:
|
30 |
+
numpy_include = np.get_include()
|
31 |
+
except AttributeError:
|
32 |
+
numpy_include = np.get_numpy_include()
|
33 |
+
|
34 |
+
|
35 |
+
# run the customize_compiler
|
36 |
+
class custom_build_ext(build_ext):
|
37 |
+
def build_extensions(self):
|
38 |
+
# customize_compiler_for_nvcc(self.compiler)
|
39 |
+
build_ext.build_extensions(self)
|
40 |
+
|
41 |
+
|
42 |
+
ext_modules = [
|
43 |
+
Extension(
|
44 |
+
"nms.cpu_nms",
|
45 |
+
["nms/cpu_nms.pyx"],
|
46 |
+
# extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
|
47 |
+
extra_compile_args=["-Wno-cpp", "-Wno-unused-function"],
|
48 |
+
include_dirs=[numpy_include]
|
49 |
+
)
|
50 |
+
]
|
51 |
+
|
52 |
+
setup(
|
53 |
+
name='mot_utils',
|
54 |
+
ext_modules=ext_modules,
|
55 |
+
# inject our custom trigger
|
56 |
+
cmdclass={'build_ext': custom_build_ext},
|
57 |
+
)
|
third_party/PIPNet/FaceBoxesV2/utils/config.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# config.py
|
2 |
+
|
3 |
+
cfg = {
|
4 |
+
'name': 'FaceBoxes',
|
5 |
+
#'min_dim': 1024,
|
6 |
+
#'feature_maps': [[32, 32], [16, 16], [8, 8]],
|
7 |
+
# 'aspect_ratios': [[1], [1], [1]],
|
8 |
+
'min_sizes': [[32, 64, 128], [256], [512]],
|
9 |
+
'steps': [32, 64, 128],
|
10 |
+
'variance': [0.1, 0.2],
|
11 |
+
'clip': False,
|
12 |
+
'loc_weight': 2.0,
|
13 |
+
'gpu_train': True
|
14 |
+
}
|
third_party/PIPNet/FaceBoxesV2/utils/faceboxes.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class BasicConv2d(nn.Module):
|
7 |
+
|
8 |
+
def __init__(self, in_channels, out_channels, **kwargs):
|
9 |
+
super(BasicConv2d, self).__init__()
|
10 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
|
11 |
+
self.bn = nn.BatchNorm2d(out_channels, eps=1e-5)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
x = self.conv(x)
|
15 |
+
x = self.bn(x)
|
16 |
+
return F.relu(x, inplace=True)
|
17 |
+
|
18 |
+
|
19 |
+
class Inception(nn.Module):
|
20 |
+
|
21 |
+
def __init__(self):
|
22 |
+
super(Inception, self).__init__()
|
23 |
+
self.branch1x1 = BasicConv2d(128, 32, kernel_size=1, padding=0)
|
24 |
+
self.branch1x1_2 = BasicConv2d(128, 32, kernel_size=1, padding=0)
|
25 |
+
self.branch3x3_reduce = BasicConv2d(128, 24, kernel_size=1, padding=0)
|
26 |
+
self.branch3x3 = BasicConv2d(24, 32, kernel_size=3, padding=1)
|
27 |
+
self.branch3x3_reduce_2 = BasicConv2d(128, 24, kernel_size=1, padding=0)
|
28 |
+
self.branch3x3_2 = BasicConv2d(24, 32, kernel_size=3, padding=1)
|
29 |
+
self.branch3x3_3 = BasicConv2d(32, 32, kernel_size=3, padding=1)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
branch1x1 = self.branch1x1(x)
|
33 |
+
|
34 |
+
branch1x1_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
|
35 |
+
branch1x1_2 = self.branch1x1_2(branch1x1_pool)
|
36 |
+
|
37 |
+
branch3x3_reduce = self.branch3x3_reduce(x)
|
38 |
+
branch3x3 = self.branch3x3(branch3x3_reduce)
|
39 |
+
|
40 |
+
branch3x3_reduce_2 = self.branch3x3_reduce_2(x)
|
41 |
+
branch3x3_2 = self.branch3x3_2(branch3x3_reduce_2)
|
42 |
+
branch3x3_3 = self.branch3x3_3(branch3x3_2)
|
43 |
+
|
44 |
+
outputs = [branch1x1, branch1x1_2, branch3x3, branch3x3_3]
|
45 |
+
return torch.cat(outputs, 1)
|
46 |
+
|
47 |
+
|
48 |
+
class CRelu(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, in_channels, out_channels, **kwargs):
|
51 |
+
super(CRelu, self).__init__()
|
52 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
|
53 |
+
self.bn = nn.BatchNorm2d(out_channels, eps=1e-5)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
x = self.conv(x)
|
57 |
+
x = self.bn(x)
|
58 |
+
x = torch.cat([x, -x], 1)
|
59 |
+
x = F.relu(x, inplace=True)
|
60 |
+
return x
|
61 |
+
|
62 |
+
|
63 |
+
class FaceBoxes(nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, phase, size, num_classes):
|
66 |
+
super(FaceBoxes, self).__init__()
|
67 |
+
self.phase = phase
|
68 |
+
self.num_classes = num_classes
|
69 |
+
self.size = size
|
70 |
+
|
71 |
+
self.conv1 = CRelu(3, 24, kernel_size=7, stride=4, padding=3)
|
72 |
+
self.conv2 = CRelu(48, 64, kernel_size=5, stride=2, padding=2)
|
73 |
+
|
74 |
+
self.inception1 = Inception()
|
75 |
+
self.inception2 = Inception()
|
76 |
+
self.inception3 = Inception()
|
77 |
+
|
78 |
+
self.conv3_1 = BasicConv2d(128, 128, kernel_size=1, stride=1, padding=0)
|
79 |
+
self.conv3_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
|
80 |
+
|
81 |
+
self.conv4_1 = BasicConv2d(256, 128, kernel_size=1, stride=1, padding=0)
|
82 |
+
self.conv4_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
|
83 |
+
|
84 |
+
self.loc, self.conf = self.multibox(self.num_classes)
|
85 |
+
|
86 |
+
if self.phase == 'test':
|
87 |
+
self.softmax = nn.Softmax(dim=-1)
|
88 |
+
|
89 |
+
if self.phase == 'train':
|
90 |
+
for m in self.modules():
|
91 |
+
if isinstance(m, nn.Conv2d):
|
92 |
+
if m.bias is not None:
|
93 |
+
nn.init.xavier_normal_(m.weight.data)
|
94 |
+
m.bias.data.fill_(0.02)
|
95 |
+
else:
|
96 |
+
m.weight.data.normal_(0, 0.01)
|
97 |
+
elif isinstance(m, nn.BatchNorm2d):
|
98 |
+
m.weight.data.fill_(1)
|
99 |
+
m.bias.data.zero_()
|
100 |
+
|
101 |
+
def multibox(self, num_classes):
|
102 |
+
loc_layers = []
|
103 |
+
conf_layers = []
|
104 |
+
loc_layers += [nn.Conv2d(128, 21 * 4, kernel_size=3, padding=1)]
|
105 |
+
conf_layers += [nn.Conv2d(128, 21 * num_classes, kernel_size=3, padding=1)]
|
106 |
+
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
|
107 |
+
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
|
108 |
+
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
|
109 |
+
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
|
110 |
+
return nn.Sequential(*loc_layers), nn.Sequential(*conf_layers)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
|
114 |
+
detection_sources = list()
|
115 |
+
loc = list()
|
116 |
+
conf = list()
|
117 |
+
|
118 |
+
x = self.conv1(x)
|
119 |
+
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
|
120 |
+
x = self.conv2(x)
|
121 |
+
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
|
122 |
+
x = self.inception1(x)
|
123 |
+
x = self.inception2(x)
|
124 |
+
x = self.inception3(x)
|
125 |
+
detection_sources.append(x)
|
126 |
+
|
127 |
+
x = self.conv3_1(x)
|
128 |
+
x = self.conv3_2(x)
|
129 |
+
detection_sources.append(x)
|
130 |
+
|
131 |
+
x = self.conv4_1(x)
|
132 |
+
x = self.conv4_2(x)
|
133 |
+
detection_sources.append(x)
|
134 |
+
|
135 |
+
for (x, l, c) in zip(detection_sources, self.loc, self.conf):
|
136 |
+
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
|
137 |
+
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
|
138 |
+
|
139 |
+
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
|
140 |
+
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
|
141 |
+
|
142 |
+
if self.phase == "test":
|
143 |
+
output = (loc.view(loc.size(0), -1, 4),
|
144 |
+
self.softmax(conf.view(conf.size(0), -1, self.num_classes)))
|
145 |
+
else:
|
146 |
+
output = (loc.view(loc.size(0), -1, 4),
|
147 |
+
conf.view(conf.size(0), -1, self.num_classes))
|
148 |
+
|
149 |
+
return output
|
150 |
+
|
151 |
+
class FaceBoxesV2(nn.Module):
|
152 |
+
|
153 |
+
def __init__(self, phase, size, num_classes):
|
154 |
+
super(FaceBoxesV2, self).__init__()
|
155 |
+
self.phase = phase
|
156 |
+
self.num_classes = num_classes
|
157 |
+
self.size = size
|
158 |
+
|
159 |
+
self.conv1 = BasicConv2d(3, 8, kernel_size=3, stride=2, padding=1)
|
160 |
+
self.conv2 = BasicConv2d(8, 16, kernel_size=3, stride=2, padding=1)
|
161 |
+
self.conv3 = BasicConv2d(16, 32, kernel_size=3, stride=2, padding=1)
|
162 |
+
self.conv4 = BasicConv2d(32, 64, kernel_size=3, stride=2, padding=1)
|
163 |
+
self.conv5 = BasicConv2d(64, 128, kernel_size=3, stride=2, padding=1)
|
164 |
+
|
165 |
+
self.inception1 = Inception()
|
166 |
+
self.inception2 = Inception()
|
167 |
+
self.inception3 = Inception()
|
168 |
+
|
169 |
+
self.conv6_1 = BasicConv2d(128, 128, kernel_size=1, stride=1, padding=0)
|
170 |
+
self.conv6_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
|
171 |
+
|
172 |
+
self.conv7_1 = BasicConv2d(256, 128, kernel_size=1, stride=1, padding=0)
|
173 |
+
self.conv7_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
|
174 |
+
|
175 |
+
self.loc, self.conf = self.multibox(self.num_classes)
|
176 |
+
|
177 |
+
if self.phase == 'test':
|
178 |
+
self.softmax = nn.Softmax(dim=-1)
|
179 |
+
|
180 |
+
if self.phase == 'train':
|
181 |
+
for m in self.modules():
|
182 |
+
if isinstance(m, nn.Conv2d):
|
183 |
+
if m.bias is not None:
|
184 |
+
nn.init.xavier_normal_(m.weight.data)
|
185 |
+
m.bias.data.fill_(0.02)
|
186 |
+
else:
|
187 |
+
m.weight.data.normal_(0, 0.01)
|
188 |
+
elif isinstance(m, nn.BatchNorm2d):
|
189 |
+
m.weight.data.fill_(1)
|
190 |
+
m.bias.data.zero_()
|
191 |
+
|
192 |
+
def multibox(self, num_classes):
|
193 |
+
loc_layers = []
|
194 |
+
conf_layers = []
|
195 |
+
loc_layers += [nn.Conv2d(128, 21 * 4, kernel_size=3, padding=1)]
|
196 |
+
conf_layers += [nn.Conv2d(128, 21 * num_classes, kernel_size=3, padding=1)]
|
197 |
+
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
|
198 |
+
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
|
199 |
+
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
|
200 |
+
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
|
201 |
+
return nn.Sequential(*loc_layers), nn.Sequential(*conf_layers)
|
202 |
+
|
203 |
+
def forward(self, x):
|
204 |
+
|
205 |
+
sources = list()
|
206 |
+
loc = list()
|
207 |
+
conf = list()
|
208 |
+
|
209 |
+
x = self.conv1(x)
|
210 |
+
x = self.conv2(x)
|
211 |
+
x = self.conv3(x)
|
212 |
+
x = self.conv4(x)
|
213 |
+
x = self.conv5(x)
|
214 |
+
x = self.inception1(x)
|
215 |
+
x = self.inception2(x)
|
216 |
+
x = self.inception3(x)
|
217 |
+
sources.append(x)
|
218 |
+
x = self.conv6_1(x)
|
219 |
+
x = self.conv6_2(x)
|
220 |
+
sources.append(x)
|
221 |
+
x = self.conv7_1(x)
|
222 |
+
x = self.conv7_2(x)
|
223 |
+
sources.append(x)
|
224 |
+
|
225 |
+
for (x, l, c) in zip(sources, self.loc, self.conf):
|
226 |
+
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
|
227 |
+
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
|
228 |
+
|
229 |
+
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
|
230 |
+
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
|
231 |
+
|
232 |
+
if self.phase == "test":
|
233 |
+
output = (loc.view(loc.size(0), -1, 4),
|
234 |
+
self.softmax(conf.view(-1, self.num_classes)))
|
235 |
+
else:
|
236 |
+
output = (loc.view(loc.size(0), -1, 4),
|
237 |
+
conf.view(conf.size(0), -1, self.num_classes))
|
238 |
+
|
239 |
+
return output
|
third_party/PIPNet/FaceBoxesV2/utils/make.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
python3 build.py build_ext --inplace
|
3 |
+
|
third_party/PIPNet/FaceBoxesV2/utils/nms/__init__.py
ADDED
File without changes
|
third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.c
ADDED
The diff for this file is too large to render.
See raw diff
|
|
third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.cpython-36m-x86_64-linux-gnu.so
ADDED
Binary file (362 kB). View file
|
|
third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.cpython-38-x86_64-linux-gnu.so
ADDED
Binary file (626 kB). View file
|
|
third_party/PIPNet/FaceBoxesV2/utils/nms/cpu_nms.pyx
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Fast R-CNN
|
3 |
+
# Copyright (c) 2015 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ross Girshick
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
cimport numpy as np
|
10 |
+
|
11 |
+
cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
|
12 |
+
return a if a >= b else b
|
13 |
+
|
14 |
+
cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
|
15 |
+
return a if a <= b else b
|
16 |
+
|
17 |
+
def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
|
18 |
+
cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
|
19 |
+
cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
|
20 |
+
cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
|
21 |
+
cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
|
22 |
+
cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
|
23 |
+
|
24 |
+
cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
25 |
+
cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
|
26 |
+
|
27 |
+
cdef int ndets = dets.shape[0]
|
28 |
+
cdef np.ndarray[np.int_t, ndim=1] suppressed = \
|
29 |
+
np.zeros((ndets), dtype=np.int)
|
30 |
+
|
31 |
+
# nominal indices
|
32 |
+
cdef int _i, _j
|
33 |
+
# sorted indices
|
34 |
+
cdef int i, j
|
35 |
+
# temp variables for box i's (the box currently under consideration)
|
36 |
+
cdef np.float32_t ix1, iy1, ix2, iy2, iarea
|
37 |
+
# variables for computing overlap with box j (lower scoring box)
|
38 |
+
cdef np.float32_t xx1, yy1, xx2, yy2
|
39 |
+
cdef np.float32_t w, h
|
40 |
+
cdef np.float32_t inter, ovr
|
41 |
+
|
42 |
+
keep = []
|
43 |
+
for _i in range(ndets):
|
44 |
+
i = order[_i]
|
45 |
+
if suppressed[i] == 1:
|
46 |
+
continue
|
47 |
+
keep.append(i)
|
48 |
+
ix1 = x1[i]
|
49 |
+
iy1 = y1[i]
|
50 |
+
ix2 = x2[i]
|
51 |
+
iy2 = y2[i]
|
52 |
+
iarea = areas[i]
|
53 |
+
for _j in range(_i + 1, ndets):
|
54 |
+
j = order[_j]
|
55 |
+
if suppressed[j] == 1:
|
56 |
+
continue
|
57 |
+
xx1 = max(ix1, x1[j])
|
58 |
+
yy1 = max(iy1, y1[j])
|
59 |
+
xx2 = min(ix2, x2[j])
|
60 |
+
yy2 = min(iy2, y2[j])
|
61 |
+
w = max(0.0, xx2 - xx1 + 1)
|
62 |
+
h = max(0.0, yy2 - yy1 + 1)
|
63 |
+
inter = w * h
|
64 |
+
ovr = inter / (iarea + areas[j] - inter)
|
65 |
+
if ovr >= thresh:
|
66 |
+
suppressed[j] = 1
|
67 |
+
|
68 |
+
return keep
|
69 |
+
|
70 |
+
def cpu_soft_nms(np.ndarray[float, ndim=2] boxes, float sigma=0.5, float Nt=0.3, float threshold=0.001, unsigned int method=0):
|
71 |
+
cdef unsigned int N = boxes.shape[0]
|
72 |
+
cdef float iw, ih, box_area
|
73 |
+
cdef float ua
|
74 |
+
cdef int pos = 0
|
75 |
+
cdef float maxscore = 0
|
76 |
+
cdef int maxpos = 0
|
77 |
+
cdef float x1,x2,y1,y2,tx1,tx2,ty1,ty2,ts,area,weight,ov
|
78 |
+
|
79 |
+
for i in range(N):
|
80 |
+
maxscore = boxes[i, 4]
|
81 |
+
maxpos = i
|
82 |
+
|
83 |
+
tx1 = boxes[i,0]
|
84 |
+
ty1 = boxes[i,1]
|
85 |
+
tx2 = boxes[i,2]
|
86 |
+
ty2 = boxes[i,3]
|
87 |
+
ts = boxes[i,4]
|
88 |
+
|
89 |
+
pos = i + 1
|
90 |
+
# get max box
|
91 |
+
while pos < N:
|
92 |
+
if maxscore < boxes[pos, 4]:
|
93 |
+
maxscore = boxes[pos, 4]
|
94 |
+
maxpos = pos
|
95 |
+
pos = pos + 1
|
96 |
+
|
97 |
+
# add max box as a detection
|
98 |
+
boxes[i,0] = boxes[maxpos,0]
|
99 |
+
boxes[i,1] = boxes[maxpos,1]
|
100 |
+
boxes[i,2] = boxes[maxpos,2]
|
101 |
+
boxes[i,3] = boxes[maxpos,3]
|
102 |
+
boxes[i,4] = boxes[maxpos,4]
|
103 |
+
|
104 |
+
# swap ith box with position of max box
|
105 |
+
boxes[maxpos,0] = tx1
|
106 |
+
boxes[maxpos,1] = ty1
|
107 |
+
boxes[maxpos,2] = tx2
|
108 |
+
boxes[maxpos,3] = ty2
|
109 |
+
boxes[maxpos,4] = ts
|
110 |
+
|
111 |
+
tx1 = boxes[i,0]
|
112 |
+
ty1 = boxes[i,1]
|
113 |
+
tx2 = boxes[i,2]
|
114 |
+
ty2 = boxes[i,3]
|
115 |
+
ts = boxes[i,4]
|
116 |
+
|
117 |
+
pos = i + 1
|
118 |
+
# NMS iterations, note that N changes if detection boxes fall below threshold
|
119 |
+
while pos < N:
|
120 |
+
x1 = boxes[pos, 0]
|
121 |
+
y1 = boxes[pos, 1]
|
122 |
+
x2 = boxes[pos, 2]
|
123 |
+
y2 = boxes[pos, 3]
|
124 |
+
s = boxes[pos, 4]
|
125 |
+
|
126 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
127 |
+
iw = (min(tx2, x2) - max(tx1, x1) + 1)
|
128 |
+
if iw > 0:
|
129 |
+
ih = (min(ty2, y2) - max(ty1, y1) + 1)
|
130 |
+
if ih > 0:
|
131 |
+
ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih)
|
132 |
+
ov = iw * ih / ua #iou between max box and detection box
|
133 |
+
|
134 |
+
if method == 1: # linear
|
135 |
+
if ov > Nt:
|
136 |
+
weight = 1 - ov
|
137 |
+
else:
|
138 |
+
weight = 1
|
139 |
+
elif method == 2: # gaussian
|
140 |
+
weight = np.exp(-(ov * ov)/sigma)
|
141 |
+
else: # original NMS
|
142 |
+
if ov > Nt:
|
143 |
+
weight = 0
|
144 |
+
else:
|
145 |
+
weight = 1
|
146 |
+
|
147 |
+
boxes[pos, 4] = weight*boxes[pos, 4]
|
148 |
+
|
149 |
+
# if box score falls below threshold, discard the box by swapping with last box
|
150 |
+
# update N
|
151 |
+
if boxes[pos, 4] < threshold:
|
152 |
+
boxes[pos,0] = boxes[N-1, 0]
|
153 |
+
boxes[pos,1] = boxes[N-1, 1]
|
154 |
+
boxes[pos,2] = boxes[N-1, 2]
|
155 |
+
boxes[pos,3] = boxes[N-1, 3]
|
156 |
+
boxes[pos,4] = boxes[N-1, 4]
|
157 |
+
N = N - 1
|
158 |
+
pos = pos - 1
|
159 |
+
|
160 |
+
pos = pos + 1
|
161 |
+
|
162 |
+
keep = [i for i in range(N)]
|
163 |
+
return keep
|
third_party/PIPNet/FaceBoxesV2/utils/nms/gpu_nms.hpp
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
|
2 |
+
int boxes_dim, float nms_overlap_thresh, int device_id);
|
third_party/PIPNet/FaceBoxesV2/utils/nms/gpu_nms.pyx
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Faster R-CNN
|
3 |
+
# Copyright (c) 2015 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ross Girshick
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
cimport numpy as np
|
10 |
+
|
11 |
+
assert sizeof(int) == sizeof(np.int32_t)
|
12 |
+
|
13 |
+
cdef extern from "gpu_nms.hpp":
|
14 |
+
void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int)
|
15 |
+
|
16 |
+
def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh,
|
17 |
+
np.int32_t device_id=0):
|
18 |
+
cdef int boxes_num = dets.shape[0]
|
19 |
+
cdef int boxes_dim = dets.shape[1]
|
20 |
+
cdef int num_out
|
21 |
+
cdef np.ndarray[np.int32_t, ndim=1] \
|
22 |
+
keep = np.zeros(boxes_num, dtype=np.int32)
|
23 |
+
cdef np.ndarray[np.float32_t, ndim=1] \
|
24 |
+
scores = dets[:, 4]
|
25 |
+
cdef np.ndarray[np.int_t, ndim=1] \
|
26 |
+
order = scores.argsort()[::-1]
|
27 |
+
cdef np.ndarray[np.float32_t, ndim=2] \
|
28 |
+
sorted_dets = dets[order, :]
|
29 |
+
_nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, thresh, device_id)
|
30 |
+
keep = keep[:num_out]
|
31 |
+
return list(order[keep])
|
third_party/PIPNet/FaceBoxesV2/utils/nms/nms_kernel.cu
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// ------------------------------------------------------------------
|
2 |
+
// Faster R-CNN
|
3 |
+
// Copyright (c) 2015 Microsoft
|
4 |
+
// Licensed under The MIT License [see fast-rcnn/LICENSE for details]
|
5 |
+
// Written by Shaoqing Ren
|
6 |
+
// ------------------------------------------------------------------
|
7 |
+
|
8 |
+
#include "gpu_nms.hpp"
|
9 |
+
#include <vector>
|
10 |
+
#include <iostream>
|
11 |
+
|
12 |
+
#define CUDA_CHECK(condition) \
|
13 |
+
/* Code block avoids redefinition of cudaError_t error */ \
|
14 |
+
do { \
|
15 |
+
cudaError_t error = condition; \
|
16 |
+
if (error != cudaSuccess) { \
|
17 |
+
std::cout << cudaGetErrorString(error) << std::endl; \
|
18 |
+
} \
|
19 |
+
} while (0)
|
20 |
+
|
21 |
+
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
|
22 |
+
int const threadsPerBlock = sizeof(unsigned long long) * 8;
|
23 |
+
|
24 |
+
__device__ inline float devIoU(float const * const a, float const * const b) {
|
25 |
+
float left = max(a[0], b[0]), right = min(a[2], b[2]);
|
26 |
+
float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
|
27 |
+
float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
|
28 |
+
float interS = width * height;
|
29 |
+
float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
|
30 |
+
float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
|
31 |
+
return interS / (Sa + Sb - interS);
|
32 |
+
}
|
33 |
+
|
34 |
+
__global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh,
|
35 |
+
const float *dev_boxes, unsigned long long *dev_mask) {
|
36 |
+
const int row_start = blockIdx.y;
|
37 |
+
const int col_start = blockIdx.x;
|
38 |
+
|
39 |
+
// if (row_start > col_start) return;
|
40 |
+
|
41 |
+
const int row_size =
|
42 |
+
min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
|
43 |
+
const int col_size =
|
44 |
+
min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
|
45 |
+
|
46 |
+
__shared__ float block_boxes[threadsPerBlock * 5];
|
47 |
+
if (threadIdx.x < col_size) {
|
48 |
+
block_boxes[threadIdx.x * 5 + 0] =
|
49 |
+
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
|
50 |
+
block_boxes[threadIdx.x * 5 + 1] =
|
51 |
+
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
|
52 |
+
block_boxes[threadIdx.x * 5 + 2] =
|
53 |
+
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
|
54 |
+
block_boxes[threadIdx.x * 5 + 3] =
|
55 |
+
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
|
56 |
+
block_boxes[threadIdx.x * 5 + 4] =
|
57 |
+
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
|
58 |
+
}
|
59 |
+
__syncthreads();
|
60 |
+
|
61 |
+
if (threadIdx.x < row_size) {
|
62 |
+
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
|
63 |
+
const float *cur_box = dev_boxes + cur_box_idx * 5;
|
64 |
+
int i = 0;
|
65 |
+
unsigned long long t = 0;
|
66 |
+
int start = 0;
|
67 |
+
if (row_start == col_start) {
|
68 |
+
start = threadIdx.x + 1;
|
69 |
+
}
|
70 |
+
for (i = start; i < col_size; i++) {
|
71 |
+
if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) {
|
72 |
+
t |= 1ULL << i;
|
73 |
+
}
|
74 |
+
}
|
75 |
+
const int col_blocks = DIVUP(n_boxes, threadsPerBlock);
|
76 |
+
dev_mask[cur_box_idx * col_blocks + col_start] = t;
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
void _set_device(int device_id) {
|
81 |
+
int current_device;
|
82 |
+
CUDA_CHECK(cudaGetDevice(¤t_device));
|
83 |
+
if (current_device == device_id) {
|
84 |
+
return;
|
85 |
+
}
|
86 |
+
// The call to cudaSetDevice must come before any calls to Get, which
|
87 |
+
// may perform initialization using the GPU.
|
88 |
+
CUDA_CHECK(cudaSetDevice(device_id));
|
89 |
+
}
|
90 |
+
|
91 |
+
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
|
92 |
+
int boxes_dim, float nms_overlap_thresh, int device_id) {
|
93 |
+
_set_device(device_id);
|
94 |
+
|
95 |
+
float* boxes_dev = NULL;
|
96 |
+
unsigned long long* mask_dev = NULL;
|
97 |
+
|
98 |
+
const int col_blocks = DIVUP(boxes_num, threadsPerBlock);
|
99 |
+
|
100 |
+
CUDA_CHECK(cudaMalloc(&boxes_dev,
|
101 |
+
boxes_num * boxes_dim * sizeof(float)));
|
102 |
+
CUDA_CHECK(cudaMemcpy(boxes_dev,
|
103 |
+
boxes_host,
|
104 |
+
boxes_num * boxes_dim * sizeof(float),
|
105 |
+
cudaMemcpyHostToDevice));
|
106 |
+
|
107 |
+
CUDA_CHECK(cudaMalloc(&mask_dev,
|
108 |
+
boxes_num * col_blocks * sizeof(unsigned long long)));
|
109 |
+
|
110 |
+
dim3 blocks(DIVUP(boxes_num, threadsPerBlock),
|
111 |
+
DIVUP(boxes_num, threadsPerBlock));
|
112 |
+
dim3 threads(threadsPerBlock);
|
113 |
+
nms_kernel<<<blocks, threads>>>(boxes_num,
|
114 |
+
nms_overlap_thresh,
|
115 |
+
boxes_dev,
|
116 |
+
mask_dev);
|
117 |
+
|
118 |
+
std::vector<unsigned long long> mask_host(boxes_num * col_blocks);
|
119 |
+
CUDA_CHECK(cudaMemcpy(&mask_host[0],
|
120 |
+
mask_dev,
|
121 |
+
sizeof(unsigned long long) * boxes_num * col_blocks,
|
122 |
+
cudaMemcpyDeviceToHost));
|
123 |
+
|
124 |
+
std::vector<unsigned long long> remv(col_blocks);
|
125 |
+
memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
|
126 |
+
|
127 |
+
int num_to_keep = 0;
|
128 |
+
for (int i = 0; i < boxes_num; i++) {
|
129 |
+
int nblock = i / threadsPerBlock;
|
130 |
+
int inblock = i % threadsPerBlock;
|
131 |
+
|
132 |
+
if (!(remv[nblock] & (1ULL << inblock))) {
|
133 |
+
keep_out[num_to_keep++] = i;
|
134 |
+
unsigned long long *p = &mask_host[0] + i * col_blocks;
|
135 |
+
for (int j = nblock; j < col_blocks; j++) {
|
136 |
+
remv[j] |= p[j];
|
137 |
+
}
|
138 |
+
}
|
139 |
+
}
|
140 |
+
*num_out = num_to_keep;
|
141 |
+
|
142 |
+
CUDA_CHECK(cudaFree(boxes_dev));
|
143 |
+
CUDA_CHECK(cudaFree(mask_dev));
|
144 |
+
}
|
third_party/PIPNet/FaceBoxesV2/utils/nms/py_cpu_nms.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Fast R-CNN
|
3 |
+
# Copyright (c) 2015 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ross Girshick
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
def py_cpu_nms(dets, thresh):
|
11 |
+
"""Pure Python NMS baseline."""
|
12 |
+
x1 = dets[:, 0]
|
13 |
+
y1 = dets[:, 1]
|
14 |
+
x2 = dets[:, 2]
|
15 |
+
y2 = dets[:, 3]
|
16 |
+
scores = dets[:, 4]
|
17 |
+
|
18 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
19 |
+
order = scores.argsort()[::-1]
|
20 |
+
|
21 |
+
keep = []
|
22 |
+
while order.size > 0:
|
23 |
+
i = order[0]
|
24 |
+
keep.append(i)
|
25 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
26 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
27 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
28 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
29 |
+
|
30 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
31 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
32 |
+
inter = w * h
|
33 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
34 |
+
|
35 |
+
inds = np.where(ovr <= thresh)[0]
|
36 |
+
order = order[inds + 1]
|
37 |
+
|
38 |
+
return keep
|
third_party/PIPNet/FaceBoxesV2/utils/nms_wrapper.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Fast R-CNN
|
3 |
+
# Copyright (c) 2015 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ross Girshick
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
from .nms.cpu_nms import cpu_nms, cpu_soft_nms
|
9 |
+
|
10 |
+
def nms(dets, thresh):
|
11 |
+
"""Dispatch to either CPU or GPU NMS implementations."""
|
12 |
+
|
13 |
+
if dets.shape[0] == 0:
|
14 |
+
return []
|
15 |
+
return cpu_nms(dets, thresh)
|
third_party/PIPNet/FaceBoxesV2/utils/prior_box.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from itertools import product as product
|
3 |
+
import numpy as np
|
4 |
+
from math import ceil
|
5 |
+
|
6 |
+
|
7 |
+
class PriorBox(object):
|
8 |
+
def __init__(self, cfg, image_size=None, phase='train'):
|
9 |
+
super(PriorBox, self).__init__()
|
10 |
+
#self.aspect_ratios = cfg['aspect_ratios']
|
11 |
+
self.min_sizes = cfg['min_sizes']
|
12 |
+
self.steps = cfg['steps']
|
13 |
+
self.clip = cfg['clip']
|
14 |
+
self.image_size = image_size
|
15 |
+
self.feature_maps = [[ceil(self.image_size[0]/step), ceil(self.image_size[1]/step)] for step in self.steps]
|
16 |
+
|
17 |
+
def forward(self):
|
18 |
+
anchors = []
|
19 |
+
for k, f in enumerate(self.feature_maps):
|
20 |
+
min_sizes = self.min_sizes[k]
|
21 |
+
for i, j in product(range(f[0]), range(f[1])):
|
22 |
+
for min_size in min_sizes:
|
23 |
+
s_kx = min_size / self.image_size[1]
|
24 |
+
s_ky = min_size / self.image_size[0]
|
25 |
+
if min_size == 32:
|
26 |
+
dense_cx = [x*self.steps[k]/self.image_size[1] for x in [j+0, j+0.25, j+0.5, j+0.75]]
|
27 |
+
dense_cy = [y*self.steps[k]/self.image_size[0] for y in [i+0, i+0.25, i+0.5, i+0.75]]
|
28 |
+
for cy, cx in product(dense_cy, dense_cx):
|
29 |
+
anchors += [cx, cy, s_kx, s_ky]
|
30 |
+
elif min_size == 64:
|
31 |
+
dense_cx = [x*self.steps[k]/self.image_size[1] for x in [j+0, j+0.5]]
|
32 |
+
dense_cy = [y*self.steps[k]/self.image_size[0] for y in [i+0, i+0.5]]
|
33 |
+
for cy, cx in product(dense_cy, dense_cx):
|
34 |
+
anchors += [cx, cy, s_kx, s_ky]
|
35 |
+
else:
|
36 |
+
cx = (j + 0.5) * self.steps[k] / self.image_size[1]
|
37 |
+
cy = (i + 0.5) * self.steps[k] / self.image_size[0]
|
38 |
+
anchors += [cx, cy, s_kx, s_ky]
|
39 |
+
# back to torch land
|
40 |
+
output = torch.Tensor(anchors).view(-1, 4)
|
41 |
+
if self.clip:
|
42 |
+
output.clamp_(max=1, min=0)
|
43 |
+
return output
|
third_party/PIPNet/FaceBoxesV2/utils/timer.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Fast R-CNN
|
3 |
+
# Copyright (c) 2015 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ross Girshick
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import time
|
9 |
+
|
10 |
+
|
11 |
+
class Timer(object):
|
12 |
+
"""A simple timer."""
|
13 |
+
def __init__(self):
|
14 |
+
self.total_time = 0.
|
15 |
+
self.calls = 0
|
16 |
+
self.start_time = 0.
|
17 |
+
self.diff = 0.
|
18 |
+
self.average_time = 0.
|
19 |
+
|
20 |
+
def tic(self):
|
21 |
+
# using time.time instead of time.clock because time time.clock
|
22 |
+
# does not normalize for multithreading
|
23 |
+
self.start_time = time.time()
|
24 |
+
|
25 |
+
def toc(self, average=True):
|
26 |
+
self.diff = time.time() - self.start_time
|
27 |
+
self.total_time += self.diff
|
28 |
+
self.calls += 1
|
29 |
+
self.average_time = self.total_time / self.calls
|
30 |
+
if average:
|
31 |
+
return self.average_time
|
32 |
+
else:
|
33 |
+
return self.diff
|
34 |
+
|
35 |
+
def clear(self):
|
36 |
+
self.total_time = 0.
|
37 |
+
self.calls = 0
|
38 |
+
self.start_time = 0.
|
39 |
+
self.diff = 0.
|
40 |
+
self.average_time = 0.
|
third_party/PIPNet/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Haibo Jin
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
third_party/PIPNet/README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild
|
2 |
+
## Introduction
|
3 |
+
This is the code of paper [Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild](https://arxiv.org/abs/2003.03771). We propose a novel facial landmark detector, PIPNet, that is **fast**, **accurate**, and **robust**. PIPNet can be trained under two settings: (1) supervised learning; (2) generalizable semi-supervised learning (GSSL). With GSSL, PIPNet has better cross-domain generalization performance by utilizing massive amounts of unlabeled data across domains.
|
4 |
+
|
5 |
+
<img src="images/speed.png" alt="speed" width="640px">
|
6 |
+
Figure 1. Comparison to existing methods on speed-accuracy tradeoff, tested on WFLW full test set (closer to bottom-right corner is better).<br><br>
|
7 |
+
|
8 |
+
<img src="images/detection_heads.png" alt="det_heads" width="512px">
|
9 |
+
Figure 2. Comparison of different detection heads.<br>
|
10 |
+
|
11 |
+
## Installation
|
12 |
+
1. Install Python3 and PyTorch >= v1.1
|
13 |
+
2. Clone this repository.
|
14 |
+
```Shell
|
15 |
+
git clone https://github.com/jhb86253817/PIPNet.git
|
16 |
+
```
|
17 |
+
3. Install the dependencies in requirements.txt.
|
18 |
+
```Shell
|
19 |
+
pip install -r requirements.txt
|
20 |
+
```
|
21 |
+
|
22 |
+
## Demo
|
23 |
+
1. We use a [modified version](https://github.com/jhb86253817/FaceBoxesV2) of [FaceBoxes](https://github.com/zisianw/FaceBoxes.PyTorch) as the face detector, so go to folder `FaceBoxesV2/utils`, run `sh make.sh` to build for NMS.
|
24 |
+
2. Back to folder `PIPNet`, create two empty folders `logs` and `snapshots`. For PIPNets, you can download our trained models from [here](https://drive.google.com/drive/folders/17OwDgJUfuc5_ymQ3QruD8pUnh5zHreP2?usp=sharing), and put them under folder `snapshots/DATA_NAME/EXPERIMENT_NAME/`.
|
25 |
+
3. Edit `run_demo.sh` to choose the config file and input source you want, then run `sh run_demo.sh`. We support image, video, and camera as the input. Some sample predictions can be seen as follows.
|
26 |
+
* PIPNet-ResNet18 trained on WFLW, with image `images/1.jpg` as the input:
|
27 |
+
<img src="images/1_out_WFLW_model.jpg" alt="1_out_WFLW_model" width="400px">
|
28 |
+
|
29 |
+
* PIPNet-ResNet18 trained on WFLW, with a snippet from *Shaolin Soccer* as the input:
|
30 |
+
<img src="videos/shaolin_soccer.gif" alt="shaolin_soccer" width="400px">
|
31 |
+
|
32 |
+
* PIPNet-ResNet18 trained on WFLW, with video `videos/002.avi` as the input:
|
33 |
+
<img src="videos/002_out_WFLW_model.gif" alt="002_out_WFLW_model" width="512px">
|
34 |
+
|
35 |
+
* PIPNet-ResNet18 trained on 300W+CelebA (GSSL), with video `videos/007.avi` as the input:
|
36 |
+
<img src="videos/007_out_300W_CELEBA_model.gif" alt="007_out_300W_CELEBA_model" width="512px">
|
37 |
+
|
38 |
+
## Training
|
39 |
+
|
40 |
+
### Supervised Learning
|
41 |
+
Datasets: [300W](https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/), [COFW](http://www.vision.caltech.edu/xpburgos/ICCV13/), [WFLW](https://wywu.github.io/projects/LAB/WFLW.html), [AFLW](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)
|
42 |
+
|
43 |
+
1. Download the datasets from official sources, then put them under folder `data`. The folder structure should look like this:
|
44 |
+
````
|
45 |
+
PIPNet
|
46 |
+
-- FaceBoxesV2
|
47 |
+
-- lib
|
48 |
+
-- experiments
|
49 |
+
-- logs
|
50 |
+
-- snapshots
|
51 |
+
-- data
|
52 |
+
|-- data_300W
|
53 |
+
|-- afw
|
54 |
+
|-- helen
|
55 |
+
|-- ibug
|
56 |
+
|-- lfpw
|
57 |
+
|-- COFW
|
58 |
+
|-- COFW_train_color.mat
|
59 |
+
|-- COFW_test_color.mat
|
60 |
+
|-- WFLW
|
61 |
+
|-- WFLW_images
|
62 |
+
|-- WFLW_annotations
|
63 |
+
|-- AFLW
|
64 |
+
|-- flickr
|
65 |
+
|-- AFLWinfo_release.mat
|
66 |
+
````
|
67 |
+
2. Go to folder `lib`, preprocess a dataset by running ```python preprocess.py DATA_NAME```. For example, to process 300W:
|
68 |
+
```
|
69 |
+
python preprocess.py data_300W
|
70 |
+
```
|
71 |
+
3. Back to folder `PIPNet`, edit `run_train.sh` to choose the config file you want. Then, train the model by running:
|
72 |
+
```
|
73 |
+
sh run_train.sh
|
74 |
+
```
|
75 |
+
|
76 |
+
### Generalizable Semi-supervised Learning
|
77 |
+
Datasets:
|
78 |
+
* data_300W_COFW_WFLW: 300W + COFW-68 (unlabeled) + WFLW-68 (unlabeled)
|
79 |
+
* data_300W_CELEBA: 300W + CelebA (unlabeled)
|
80 |
+
|
81 |
+
1. Download 300W, COFW, and WFLW as in the supervised learning setting. Download annotations of COFW-68 test from [here](https://github.com/golnazghiasi/cofw68-benchmark). For 300W+CelebA, you also need to download the in-the-wild CelebA images from [here](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html), and the [face bounding boxes](https://drive.google.com/drive/folders/17OwDgJUfuc5_ymQ3QruD8pUnh5zHreP2?usp=sharing) detected by us. The folder structure should look like this:
|
82 |
+
````
|
83 |
+
PIPNet
|
84 |
+
-- FaceBoxesV2
|
85 |
+
-- lib
|
86 |
+
-- experiments
|
87 |
+
-- logs
|
88 |
+
-- snapshots
|
89 |
+
-- data
|
90 |
+
|-- data_300W
|
91 |
+
|-- afw
|
92 |
+
|-- helen
|
93 |
+
|-- ibug
|
94 |
+
|-- lfpw
|
95 |
+
|-- COFW
|
96 |
+
|-- COFW_train_color.mat
|
97 |
+
|-- COFW_test_color.mat
|
98 |
+
|-- WFLW
|
99 |
+
|-- WFLW_images
|
100 |
+
|-- WFLW_annotations
|
101 |
+
|-- data_300W_COFW_WFLW
|
102 |
+
|-- cofw68_test_annotations
|
103 |
+
|-- cofw68_test_bboxes.mat
|
104 |
+
|-- CELEBA
|
105 |
+
|-- img_celeba
|
106 |
+
|-- celeba_bboxes.txt
|
107 |
+
|-- data_300W_CELEBA
|
108 |
+
|-- cofw68_test_annotations
|
109 |
+
|-- cofw68_test_bboxes.mat
|
110 |
+
````
|
111 |
+
2. Go to folder `lib`, preprocess a dataset by running ```python preprocess_gssl.py DATA_NAME```.
|
112 |
+
To process data_300W_COFW_WFLW, run
|
113 |
+
```
|
114 |
+
python preprocess_gssl.py data_300W_COFW_WFLW
|
115 |
+
```
|
116 |
+
To process data_300W_CELEBA, run
|
117 |
+
```
|
118 |
+
python preprocess_gssl.py CELEBA
|
119 |
+
```
|
120 |
+
and
|
121 |
+
```
|
122 |
+
python preprocess_gssl.py data_300W_CELEBA
|
123 |
+
```
|
124 |
+
3. Back to folder `PIPNet`, edit `run_train.sh` to choose the config file you want. Then, train the model by running:
|
125 |
+
```
|
126 |
+
sh run_train.sh
|
127 |
+
```
|
128 |
+
|
129 |
+
## Evaluation
|
130 |
+
1. Edit `run_test.sh` to choose the config file you want. Then, test the model by running:
|
131 |
+
```
|
132 |
+
sh run_test.sh
|
133 |
+
```
|
134 |
+
|
135 |
+
## Citation
|
136 |
+
````
|
137 |
+
@article{JLS21,
|
138 |
+
title={Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild},
|
139 |
+
author={Haibo Jin and Shengcai Liao and Ling Shao},
|
140 |
+
journal={International Journal of Computer Vision},
|
141 |
+
publisher={Springer Science and Business Media LLC},
|
142 |
+
ISSN={1573-1405},
|
143 |
+
url={http://dx.doi.org/10.1007/s11263-021-01521-4},
|
144 |
+
DOI={10.1007/s11263-021-01521-4},
|
145 |
+
year={2021},
|
146 |
+
month={Sep}
|
147 |
+
}
|
148 |
+
````
|
149 |
+
|
150 |
+
## Acknowledgement
|
151 |
+
We thank the following great works:
|
152 |
+
* [human-pose-estimation.pytorch](https://github.com/microsoft/human-pose-estimation.pytorch)
|
153 |
+
* [HRNet-Facial-Landmark-Detection](https://github.com/HRNet/HRNet-Facial-Landmark-Detection)
|
third_party/PIPNet/lib/data_utils.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.utils.data as data
|
2 |
+
import torch
|
3 |
+
from PIL import Image, ImageFilter
|
4 |
+
import os, cv2
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
from scipy.stats import norm
|
8 |
+
from math import floor
|
9 |
+
|
10 |
+
def random_translate(image, target):
|
11 |
+
if random.random() > 0.5:
|
12 |
+
image_height, image_width = image.size
|
13 |
+
a = 1
|
14 |
+
b = 0
|
15 |
+
#c = 30 #left/right (i.e. 5/-5)
|
16 |
+
c = int((random.random()-0.5) * 60)
|
17 |
+
d = 0
|
18 |
+
e = 1
|
19 |
+
#f = 30 #up/down (i.e. 5/-5)
|
20 |
+
f = int((random.random()-0.5) * 60)
|
21 |
+
image = image.transform(image.size, Image.AFFINE, (a, b, c, d, e, f))
|
22 |
+
target_translate = target.copy()
|
23 |
+
target_translate = target_translate.reshape(-1, 2)
|
24 |
+
target_translate[:, 0] -= 1.*c/image_width
|
25 |
+
target_translate[:, 1] -= 1.*f/image_height
|
26 |
+
target_translate = target_translate.flatten()
|
27 |
+
target_translate[target_translate < 0] = 0
|
28 |
+
target_translate[target_translate > 1] = 1
|
29 |
+
return image, target_translate
|
30 |
+
else:
|
31 |
+
return image, target
|
32 |
+
|
33 |
+
def random_blur(image):
|
34 |
+
if random.random() > 0.7:
|
35 |
+
image = image.filter(ImageFilter.GaussianBlur(random.random()*5))
|
36 |
+
return image
|
37 |
+
|
38 |
+
def random_occlusion(image):
|
39 |
+
if random.random() > 0.5:
|
40 |
+
image_np = np.array(image).astype(np.uint8)
|
41 |
+
image_np = image_np[:,:,::-1]
|
42 |
+
image_height, image_width, _ = image_np.shape
|
43 |
+
occ_height = int(image_height*0.4*random.random())
|
44 |
+
occ_width = int(image_width*0.4*random.random())
|
45 |
+
occ_xmin = int((image_width - occ_width - 10) * random.random())
|
46 |
+
occ_ymin = int((image_height - occ_height - 10) * random.random())
|
47 |
+
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 0] = int(random.random() * 255)
|
48 |
+
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 1] = int(random.random() * 255)
|
49 |
+
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 2] = int(random.random() * 255)
|
50 |
+
image_pil = Image.fromarray(image_np[:,:,::-1].astype('uint8'), 'RGB')
|
51 |
+
return image_pil
|
52 |
+
else:
|
53 |
+
return image
|
54 |
+
|
55 |
+
def random_flip(image, target, points_flip):
|
56 |
+
if random.random() > 0.5:
|
57 |
+
image = image.transpose(Image.FLIP_LEFT_RIGHT)
|
58 |
+
target = np.array(target).reshape(-1, 2)
|
59 |
+
target = target[points_flip, :]
|
60 |
+
target[:,0] = 1-target[:,0]
|
61 |
+
target = target.flatten()
|
62 |
+
return image, target
|
63 |
+
else:
|
64 |
+
return image, target
|
65 |
+
|
66 |
+
def random_rotate(image, target, angle_max):
|
67 |
+
if random.random() > 0.5:
|
68 |
+
center_x = 0.5
|
69 |
+
center_y = 0.5
|
70 |
+
landmark_num= int(len(target) / 2)
|
71 |
+
target_center = np.array(target) - np.array([center_x, center_y]*landmark_num)
|
72 |
+
target_center = target_center.reshape(landmark_num, 2)
|
73 |
+
theta_max = np.radians(angle_max)
|
74 |
+
theta = random.uniform(-theta_max, theta_max)
|
75 |
+
angle = np.degrees(theta)
|
76 |
+
image = image.rotate(angle)
|
77 |
+
|
78 |
+
c, s = np.cos(theta), np.sin(theta)
|
79 |
+
rot = np.array(((c,-s), (s, c)))
|
80 |
+
target_center_rot = np.matmul(target_center, rot)
|
81 |
+
target_rot = target_center_rot.reshape(landmark_num*2) + np.array([center_x, center_y]*landmark_num)
|
82 |
+
return image, target_rot
|
83 |
+
else:
|
84 |
+
return image, target
|
85 |
+
|
86 |
+
def gen_target_pip(target, meanface_indices, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y):
|
87 |
+
num_nb = len(meanface_indices[0])
|
88 |
+
map_channel, map_height, map_width = target_map.shape
|
89 |
+
target = target.reshape(-1, 2)
|
90 |
+
assert map_channel == target.shape[0]
|
91 |
+
|
92 |
+
for i in range(map_channel):
|
93 |
+
mu_x = int(floor(target[i][0] * map_width))
|
94 |
+
mu_y = int(floor(target[i][1] * map_height))
|
95 |
+
mu_x = max(0, mu_x)
|
96 |
+
mu_y = max(0, mu_y)
|
97 |
+
mu_x = min(mu_x, map_width-1)
|
98 |
+
mu_y = min(mu_y, map_height-1)
|
99 |
+
target_map[i, mu_y, mu_x] = 1
|
100 |
+
shift_x = target[i][0] * map_width - mu_x
|
101 |
+
shift_y = target[i][1] * map_height - mu_y
|
102 |
+
target_local_x[i, mu_y, mu_x] = shift_x
|
103 |
+
target_local_y[i, mu_y, mu_x] = shift_y
|
104 |
+
|
105 |
+
for j in range(num_nb):
|
106 |
+
nb_x = target[meanface_indices[i][j]][0] * map_width - mu_x
|
107 |
+
nb_y = target[meanface_indices[i][j]][1] * map_height - mu_y
|
108 |
+
target_nb_x[num_nb*i+j, mu_y, mu_x] = nb_x
|
109 |
+
target_nb_y[num_nb*i+j, mu_y, mu_x] = nb_y
|
110 |
+
|
111 |
+
return target_map, target_local_x, target_local_y, target_nb_x, target_nb_y
|
112 |
+
|
113 |
+
class ImageFolder_pip(data.Dataset):
|
114 |
+
def __init__(self, root, imgs, input_size, num_lms, net_stride, points_flip, meanface_indices, transform=None, target_transform=None):
|
115 |
+
self.root = root
|
116 |
+
self.imgs = imgs
|
117 |
+
self.num_lms = num_lms
|
118 |
+
self.net_stride = net_stride
|
119 |
+
self.points_flip = points_flip
|
120 |
+
self.meanface_indices = meanface_indices
|
121 |
+
self.num_nb = len(meanface_indices[0])
|
122 |
+
self.transform = transform
|
123 |
+
self.target_transform = target_transform
|
124 |
+
self.input_size = input_size
|
125 |
+
|
126 |
+
def __getitem__(self, index):
|
127 |
+
|
128 |
+
img_name, target = self.imgs[index]
|
129 |
+
|
130 |
+
img = Image.open(os.path.join(self.root, img_name)).convert('RGB')
|
131 |
+
img, target = random_translate(img, target)
|
132 |
+
img = random_occlusion(img)
|
133 |
+
img, target = random_flip(img, target, self.points_flip)
|
134 |
+
img, target = random_rotate(img, target, 30)
|
135 |
+
img = random_blur(img)
|
136 |
+
|
137 |
+
target_map = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
138 |
+
target_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
139 |
+
target_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
140 |
+
target_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
141 |
+
target_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
142 |
+
target_map, target_local_x, target_local_y, target_nb_x, target_nb_y = gen_target_pip(target, self.meanface_indices, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y)
|
143 |
+
|
144 |
+
target_map = torch.from_numpy(target_map).float()
|
145 |
+
target_local_x = torch.from_numpy(target_local_x).float()
|
146 |
+
target_local_y = torch.from_numpy(target_local_y).float()
|
147 |
+
target_nb_x = torch.from_numpy(target_nb_x).float()
|
148 |
+
target_nb_y = torch.from_numpy(target_nb_y).float()
|
149 |
+
|
150 |
+
if self.transform is not None:
|
151 |
+
img = self.transform(img)
|
152 |
+
if self.target_transform is not None:
|
153 |
+
target_map = self.target_transform(target_map)
|
154 |
+
target_local_x = self.target_transform(target_local_x)
|
155 |
+
target_local_y = self.target_transform(target_local_y)
|
156 |
+
target_nb_x = self.target_transform(target_nb_x)
|
157 |
+
target_nb_y = self.target_transform(target_nb_y)
|
158 |
+
|
159 |
+
return img, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y
|
160 |
+
|
161 |
+
def __len__(self):
|
162 |
+
return len(self.imgs)
|
163 |
+
|
164 |
+
if __name__ == '__main__':
|
165 |
+
pass
|
166 |
+
|
third_party/PIPNet/lib/data_utils_gssl.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.utils.data as data
|
2 |
+
import torch
|
3 |
+
from PIL import Image, ImageFilter
|
4 |
+
import os, cv2
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
from scipy.stats import norm
|
8 |
+
from math import floor
|
9 |
+
|
10 |
+
def random_translate(image, target):
|
11 |
+
if random.random() > 0.5:
|
12 |
+
image_height, image_width = image.size
|
13 |
+
a = 1
|
14 |
+
b = 0
|
15 |
+
#c = 30 #left/right (i.e. 5/-5)
|
16 |
+
c = int((random.random()-0.5) * 60)
|
17 |
+
d = 0
|
18 |
+
e = 1
|
19 |
+
#f = 30 #up/down (i.e. 5/-5)
|
20 |
+
f = int((random.random()-0.5) * 60)
|
21 |
+
image = image.transform(image.size, Image.AFFINE, (a, b, c, d, e, f))
|
22 |
+
target_translate = target.copy()
|
23 |
+
target_translate = target_translate.reshape(-1, 2)
|
24 |
+
target_translate[:, 0] -= 1.*c/image_width
|
25 |
+
target_translate[:, 1] -= 1.*f/image_height
|
26 |
+
target_translate = target_translate.flatten()
|
27 |
+
target_translate[target_translate < 0] = 0
|
28 |
+
target_translate[target_translate > 1] = 1
|
29 |
+
return image, target_translate
|
30 |
+
else:
|
31 |
+
return image, target
|
32 |
+
|
33 |
+
def random_blur(image):
|
34 |
+
if random.random() > 0.7:
|
35 |
+
image = image.filter(ImageFilter.GaussianBlur(random.random()*5))
|
36 |
+
return image
|
37 |
+
|
38 |
+
def random_occlusion(image):
|
39 |
+
if random.random() > 0.5:
|
40 |
+
image_np = np.array(image).astype(np.uint8)
|
41 |
+
image_np = image_np[:,:,::-1]
|
42 |
+
image_height, image_width, _ = image_np.shape
|
43 |
+
occ_height = int(image_height*0.4*random.random())
|
44 |
+
occ_width = int(image_width*0.4*random.random())
|
45 |
+
occ_xmin = int((image_width - occ_width - 10) * random.random())
|
46 |
+
occ_ymin = int((image_height - occ_height - 10) * random.random())
|
47 |
+
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 0] = int(random.random() * 255)
|
48 |
+
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 1] = int(random.random() * 255)
|
49 |
+
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 2] = int(random.random() * 255)
|
50 |
+
image_pil = Image.fromarray(image_np[:,:,::-1].astype('uint8'), 'RGB')
|
51 |
+
return image_pil
|
52 |
+
else:
|
53 |
+
return image
|
54 |
+
|
55 |
+
def random_flip(image, target, points_flip):
|
56 |
+
if random.random() > 0.5:
|
57 |
+
image = image.transpose(Image.FLIP_LEFT_RIGHT)
|
58 |
+
target = np.array(target).reshape(-1, 2)
|
59 |
+
target = target[points_flip, :]
|
60 |
+
target[:,0] = 1-target[:,0]
|
61 |
+
target = target.flatten()
|
62 |
+
return image, target
|
63 |
+
else:
|
64 |
+
return image, target
|
65 |
+
|
66 |
+
def random_rotate(image, target, angle_max):
|
67 |
+
if random.random() > 0.5:
|
68 |
+
center_x = 0.5
|
69 |
+
center_y = 0.5
|
70 |
+
landmark_num= int(len(target) / 2)
|
71 |
+
target_center = np.array(target) - np.array([center_x, center_y]*landmark_num)
|
72 |
+
target_center = target_center.reshape(landmark_num, 2)
|
73 |
+
theta_max = np.radians(angle_max)
|
74 |
+
theta = random.uniform(-theta_max, theta_max)
|
75 |
+
angle = np.degrees(theta)
|
76 |
+
image = image.rotate(angle)
|
77 |
+
|
78 |
+
c, s = np.cos(theta), np.sin(theta)
|
79 |
+
rot = np.array(((c,-s), (s, c)))
|
80 |
+
target_center_rot = np.matmul(target_center, rot)
|
81 |
+
target_rot = target_center_rot.reshape(landmark_num*2) + np.array([center_x, center_y]*landmark_num)
|
82 |
+
return image, target_rot
|
83 |
+
else:
|
84 |
+
return image, target
|
85 |
+
|
86 |
+
def gen_target_pip(target, meanface_indices, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y):
|
87 |
+
num_nb = len(meanface_indices[0])
|
88 |
+
map_channel1, map_height1, map_width1 = target_map1.shape
|
89 |
+
map_channel2, map_height2, map_width2 = target_map2.shape
|
90 |
+
map_channel3, map_height3, map_width3 = target_map3.shape
|
91 |
+
target = target.reshape(-1, 2)
|
92 |
+
assert map_channel1 == target.shape[0]
|
93 |
+
|
94 |
+
for i in range(map_channel1):
|
95 |
+
mu_x1 = int(floor(target[i][0] * map_width1))
|
96 |
+
mu_y1 = int(floor(target[i][1] * map_height1))
|
97 |
+
mu_x1 = max(0, mu_x1)
|
98 |
+
mu_y1 = max(0, mu_y1)
|
99 |
+
mu_x1 = min(mu_x1, map_width1-1)
|
100 |
+
mu_y1 = min(mu_y1, map_height1-1)
|
101 |
+
target_map1[i, mu_y1, mu_x1] = 1
|
102 |
+
|
103 |
+
shift_x = target[i][0] * map_width1 - mu_x1
|
104 |
+
shift_y = target[i][1] * map_height1 - mu_y1
|
105 |
+
target_local_x[i, mu_y1, mu_x1] = shift_x
|
106 |
+
target_local_y[i, mu_y1, mu_x1] = shift_y
|
107 |
+
|
108 |
+
for j in range(num_nb):
|
109 |
+
nb_x = target[meanface_indices[i][j]][0] * map_width1 - mu_x1
|
110 |
+
nb_y = target[meanface_indices[i][j]][1] * map_height1 - mu_y1
|
111 |
+
target_nb_x[num_nb*i+j, mu_y1, mu_x1] = nb_x
|
112 |
+
target_nb_y[num_nb*i+j, mu_y1, mu_x1] = nb_y
|
113 |
+
|
114 |
+
mu_x2 = int(floor(target[i][0] * map_width2))
|
115 |
+
mu_y2 = int(floor(target[i][1] * map_height2))
|
116 |
+
mu_x2 = max(0, mu_x2)
|
117 |
+
mu_y2 = max(0, mu_y2)
|
118 |
+
mu_x2 = min(mu_x2, map_width2-1)
|
119 |
+
mu_y2 = min(mu_y2, map_height2-1)
|
120 |
+
target_map2[i, mu_y2, mu_x2] = 1
|
121 |
+
|
122 |
+
mu_x3 = int(floor(target[i][0] * map_width3))
|
123 |
+
mu_y3 = int(floor(target[i][1] * map_height3))
|
124 |
+
mu_x3 = max(0, mu_x3)
|
125 |
+
mu_y3 = max(0, mu_y3)
|
126 |
+
mu_x3 = min(mu_x3, map_width3-1)
|
127 |
+
mu_y3 = min(mu_y3, map_height3-1)
|
128 |
+
target_map3[i, mu_y3, mu_x3] = 1
|
129 |
+
|
130 |
+
return target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y
|
131 |
+
|
132 |
+
def gen_target_pip_cls1(target, target_map1):
|
133 |
+
map_channel1, map_height1, map_width1 = target_map1.shape
|
134 |
+
target = target.reshape(-1, 2)
|
135 |
+
assert map_channel1 == target.shape[0]
|
136 |
+
|
137 |
+
for i in range(map_channel1):
|
138 |
+
mu_x1 = int(floor(target[i][0] * map_width1))
|
139 |
+
mu_y1 = int(floor(target[i][1] * map_height1))
|
140 |
+
mu_x1 = max(0, mu_x1)
|
141 |
+
mu_y1 = max(0, mu_y1)
|
142 |
+
mu_x1 = min(mu_x1, map_width1-1)
|
143 |
+
mu_y1 = min(mu_y1, map_height1-1)
|
144 |
+
target_map1[i, mu_y1, mu_x1] = 1
|
145 |
+
|
146 |
+
return target_map1
|
147 |
+
|
148 |
+
def gen_target_pip_cls2(target, target_map2):
|
149 |
+
map_channel2, map_height2, map_width2 = target_map2.shape
|
150 |
+
target = target.reshape(-1, 2)
|
151 |
+
assert map_channel2 == target.shape[0]
|
152 |
+
|
153 |
+
for i in range(map_channel2):
|
154 |
+
mu_x2 = int(floor(target[i][0] * map_width2))
|
155 |
+
mu_y2 = int(floor(target[i][1] * map_height2))
|
156 |
+
mu_x2 = max(0, mu_x2)
|
157 |
+
mu_y2 = max(0, mu_y2)
|
158 |
+
mu_x2 = min(mu_x2, map_width2-1)
|
159 |
+
mu_y2 = min(mu_y2, map_height2-1)
|
160 |
+
target_map2[i, mu_y2, mu_x2] = 1
|
161 |
+
|
162 |
+
return target_map2
|
163 |
+
|
164 |
+
def gen_target_pip_cls3(target, target_map3):
|
165 |
+
map_channel3, map_height3, map_width3 = target_map3.shape
|
166 |
+
target = target.reshape(-1, 2)
|
167 |
+
assert map_channel3 == target.shape[0]
|
168 |
+
|
169 |
+
for i in range(map_channel3):
|
170 |
+
mu_x3 = int(floor(target[i][0] * map_width3))
|
171 |
+
mu_y3 = int(floor(target[i][1] * map_height3))
|
172 |
+
mu_x3 = max(0, mu_x3)
|
173 |
+
mu_y3 = max(0, mu_y3)
|
174 |
+
mu_x3 = min(mu_x3, map_width3-1)
|
175 |
+
mu_y3 = min(mu_y3, map_height3-1)
|
176 |
+
target_map3[i, mu_y3, mu_x3] = 1
|
177 |
+
|
178 |
+
return target_map3
|
179 |
+
|
180 |
+
class ImageFolder_pip(data.Dataset):
|
181 |
+
def __init__(self, root, imgs, input_size, num_lms, net_stride, points_flip, meanface_indices, transform=None, target_transform=None):
|
182 |
+
self.root = root
|
183 |
+
self.imgs = imgs
|
184 |
+
self.num_lms = num_lms
|
185 |
+
self.net_stride = net_stride
|
186 |
+
self.points_flip = points_flip
|
187 |
+
self.meanface_indices = meanface_indices
|
188 |
+
self.num_nb = len(meanface_indices[0])
|
189 |
+
self.transform = transform
|
190 |
+
self.target_transform = target_transform
|
191 |
+
self.input_size = input_size
|
192 |
+
|
193 |
+
def __getitem__(self, index):
|
194 |
+
"""
|
195 |
+
Args:
|
196 |
+
index (int): Index
|
197 |
+
Returns:
|
198 |
+
tuple: (image, target) where target is class_index of the target class.
|
199 |
+
"""
|
200 |
+
img_name, target_type, target = self.imgs[index]
|
201 |
+
img = Image.open(os.path.join(self.root, img_name)).convert('RGB')
|
202 |
+
|
203 |
+
img, target = random_translate(img, target)
|
204 |
+
img = random_occlusion(img)
|
205 |
+
img, target = random_flip(img, target, self.points_flip)
|
206 |
+
img, target = random_rotate(img, target, 30)
|
207 |
+
img = random_blur(img)
|
208 |
+
|
209 |
+
target_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
210 |
+
target_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
|
211 |
+
target_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
|
212 |
+
target_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
213 |
+
target_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
214 |
+
target_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
215 |
+
target_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
216 |
+
|
217 |
+
mask_map1 = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
218 |
+
mask_map2 = np.ones((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
|
219 |
+
mask_map3 = np.ones((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
|
220 |
+
mask_local_x = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
221 |
+
mask_local_y = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
222 |
+
mask_nb_x = np.ones((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
223 |
+
mask_nb_y = np.ones((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
224 |
+
|
225 |
+
if target_type == 'std':
|
226 |
+
target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y = gen_target_pip(target, self.meanface_indices, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y)
|
227 |
+
mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
|
228 |
+
mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
|
229 |
+
elif target_type == 'cls1':
|
230 |
+
target_map1 = gen_target_pip_cls1(target, target_map1)
|
231 |
+
mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
|
232 |
+
mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
|
233 |
+
mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
234 |
+
mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
235 |
+
mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
236 |
+
mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
237 |
+
elif target_type == 'cls2':
|
238 |
+
target_map2 = gen_target_pip_cls2(target, target_map2)
|
239 |
+
mask_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
240 |
+
mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
|
241 |
+
mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
242 |
+
mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
243 |
+
mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
244 |
+
mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
245 |
+
elif target_type == 'cls3':
|
246 |
+
target_map3 = gen_target_pip_cls3(target, target_map3)
|
247 |
+
mask_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
248 |
+
mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
|
249 |
+
mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
250 |
+
mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
251 |
+
mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
252 |
+
mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
|
253 |
+
else:
|
254 |
+
print('No such target type!')
|
255 |
+
exit(0)
|
256 |
+
|
257 |
+
target_map1 = torch.from_numpy(target_map1).float()
|
258 |
+
target_map2 = torch.from_numpy(target_map2).float()
|
259 |
+
target_map3 = torch.from_numpy(target_map3).float()
|
260 |
+
target_local_x = torch.from_numpy(target_local_x).float()
|
261 |
+
target_local_y = torch.from_numpy(target_local_y).float()
|
262 |
+
target_nb_x = torch.from_numpy(target_nb_x).float()
|
263 |
+
target_nb_y = torch.from_numpy(target_nb_y).float()
|
264 |
+
mask_map1 = torch.from_numpy(mask_map1).float()
|
265 |
+
mask_map2 = torch.from_numpy(mask_map2).float()
|
266 |
+
mask_map3 = torch.from_numpy(mask_map3).float()
|
267 |
+
mask_local_x = torch.from_numpy(mask_local_x).float()
|
268 |
+
mask_local_y = torch.from_numpy(mask_local_y).float()
|
269 |
+
mask_nb_x = torch.from_numpy(mask_nb_x).float()
|
270 |
+
mask_nb_y = torch.from_numpy(mask_nb_y).float()
|
271 |
+
|
272 |
+
if self.transform is not None:
|
273 |
+
img = self.transform(img)
|
274 |
+
if self.target_transform is not None:
|
275 |
+
target_map1 = self.target_transform(target_map1)
|
276 |
+
target_map2 = self.target_transform(target_map2)
|
277 |
+
target_map3 = self.target_transform(target_map3)
|
278 |
+
target_local_x = self.target_transform(target_local_x)
|
279 |
+
target_local_y = self.target_transform(target_local_y)
|
280 |
+
target_nb_x = self.target_transform(target_nb_x)
|
281 |
+
target_nb_y = self.target_transform(target_nb_y)
|
282 |
+
|
283 |
+
return img, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y, mask_map1, mask_map2, mask_map3, mask_local_x, mask_local_y, mask_nb_x, mask_nb_y
|
284 |
+
|
285 |
+
def __len__(self):
|
286 |
+
return len(self.imgs)
|
287 |
+
|
288 |
+
if __name__ == '__main__':
|
289 |
+
pass
|
290 |
+
|
third_party/PIPNet/lib/demo.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.insert(0, "FaceBoxesV2")
|
5 |
+
sys.path.insert(0, "..")
|
6 |
+
from math import floor
|
7 |
+
from faceboxes_detector import *
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.parallel
|
11 |
+
import torch.utils.data
|
12 |
+
import torchvision.transforms as transforms
|
13 |
+
import torchvision.models as models
|
14 |
+
|
15 |
+
from networks import *
|
16 |
+
from functions import *
|
17 |
+
from PIPNet.reverse_index import ri1, ri2
|
18 |
+
|
19 |
+
|
20 |
+
class Config:
|
21 |
+
def __init__(self):
|
22 |
+
self.det_head = "pip"
|
23 |
+
self.net_stride = 32
|
24 |
+
self.batch_size = 16
|
25 |
+
self.init_lr = 0.0001
|
26 |
+
self.num_epochs = 60
|
27 |
+
self.decay_steps = [30, 50]
|
28 |
+
self.input_size = 256
|
29 |
+
self.backbone = "resnet101"
|
30 |
+
self.pretrained = True
|
31 |
+
self.criterion_cls = "l2"
|
32 |
+
self.criterion_reg = "l1"
|
33 |
+
self.cls_loss_weight = 10
|
34 |
+
self.reg_loss_weight = 1
|
35 |
+
self.num_lms = 98
|
36 |
+
self.save_interval = self.num_epochs
|
37 |
+
self.num_nb = 10
|
38 |
+
self.use_gpu = True
|
39 |
+
self.gpu_id = 3
|
40 |
+
|
41 |
+
|
42 |
+
def get_lmk_model():
|
43 |
+
|
44 |
+
cfg = Config()
|
45 |
+
|
46 |
+
resnet101 = models.resnet101(pretrained=cfg.pretrained)
|
47 |
+
net = Pip_resnet101(
|
48 |
+
resnet101,
|
49 |
+
cfg.num_nb,
|
50 |
+
num_lms=cfg.num_lms,
|
51 |
+
input_size=cfg.input_size,
|
52 |
+
net_stride=cfg.net_stride,
|
53 |
+
)
|
54 |
+
|
55 |
+
if cfg.use_gpu:
|
56 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
57 |
+
else:
|
58 |
+
device = torch.device("cpu")
|
59 |
+
net = net.to(device)
|
60 |
+
|
61 |
+
weight_file = "/apdcephfs/share_1290939/ahbanliang/codes/PIPNet/snapshots/WFLW/pip_32_16_60_r101_l2_l1_10_1_nb10/epoch59.pth"
|
62 |
+
state_dict = torch.load(weight_file, map_location=device)
|
63 |
+
net.load_state_dict(state_dict)
|
64 |
+
|
65 |
+
detector = FaceBoxesDetector(
|
66 |
+
"FaceBoxes",
|
67 |
+
"FaceBoxesV2/weights/FaceBoxesV2.pth",
|
68 |
+
use_gpu=True,
|
69 |
+
device="cuda:0",
|
70 |
+
)
|
71 |
+
return net, detector
|
72 |
+
|
73 |
+
|
74 |
+
def demo_image(
|
75 |
+
image_file,
|
76 |
+
net,
|
77 |
+
detector,
|
78 |
+
input_size=256,
|
79 |
+
net_stride=32,
|
80 |
+
num_nb=10,
|
81 |
+
use_gpu=True,
|
82 |
+
device="cuda:0",
|
83 |
+
):
|
84 |
+
|
85 |
+
my_thresh = 0.6
|
86 |
+
det_box_scale = 1.2
|
87 |
+
net.eval()
|
88 |
+
preprocess = transforms.Compose(
|
89 |
+
[
|
90 |
+
transforms.Resize((256, 256)),
|
91 |
+
transforms.ToTensor(),
|
92 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
93 |
+
]
|
94 |
+
)
|
95 |
+
reverse_index1, reverse_index2, max_len = ri1, ri2, 17
|
96 |
+
image = cv2.imread(image_file)
|
97 |
+
image_height, image_width, _ = image.shape
|
98 |
+
detections, _ = detector.detect(image, my_thresh, 1)
|
99 |
+
for i in range(len(detections)):
|
100 |
+
det_xmin = detections[i][2]
|
101 |
+
det_ymin = detections[i][3]
|
102 |
+
det_width = detections[i][4]
|
103 |
+
det_height = detections[i][5]
|
104 |
+
det_xmax = det_xmin + det_width - 1
|
105 |
+
det_ymax = det_ymin + det_height - 1
|
106 |
+
|
107 |
+
det_xmin -= int(det_width * (det_box_scale - 1) / 2)
|
108 |
+
# remove a part of top area for alignment, see paper for details
|
109 |
+
det_ymin += int(det_height * (det_box_scale - 1) / 2)
|
110 |
+
det_xmax += int(det_width * (det_box_scale - 1) / 2)
|
111 |
+
det_ymax += int(det_height * (det_box_scale - 1) / 2)
|
112 |
+
det_xmin = max(det_xmin, 0)
|
113 |
+
det_ymin = max(det_ymin, 0)
|
114 |
+
det_xmax = min(det_xmax, image_width - 1)
|
115 |
+
det_ymax = min(det_ymax, image_height - 1)
|
116 |
+
det_width = det_xmax - det_xmin + 1
|
117 |
+
det_height = det_ymax - det_ymin + 1
|
118 |
+
cv2.rectangle(image, (det_xmin, det_ymin), (det_xmax, det_ymax), (0, 0, 255), 2)
|
119 |
+
det_crop = image[det_ymin:det_ymax, det_xmin:det_xmax, :]
|
120 |
+
det_crop = cv2.resize(det_crop, (input_size, input_size))
|
121 |
+
inputs = Image.fromarray(det_crop[:, :, ::-1].astype("uint8"), "RGB")
|
122 |
+
inputs = preprocess(inputs).unsqueeze(0)
|
123 |
+
inputs = inputs.to(device)
|
124 |
+
(
|
125 |
+
lms_pred_x,
|
126 |
+
lms_pred_y,
|
127 |
+
lms_pred_nb_x,
|
128 |
+
lms_pred_nb_y,
|
129 |
+
outputs_cls,
|
130 |
+
max_cls,
|
131 |
+
) = forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb)
|
132 |
+
lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten()
|
133 |
+
tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(98, max_len)
|
134 |
+
tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(98, max_len)
|
135 |
+
tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1, 1)
|
136 |
+
tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1, 1)
|
137 |
+
lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten()
|
138 |
+
lms_pred = lms_pred.cpu().numpy()
|
139 |
+
lms_pred_merge = lms_pred_merge.cpu().numpy()
|
140 |
+
for i in range(98):
|
141 |
+
x_pred = lms_pred_merge[i * 2] * det_width
|
142 |
+
y_pred = lms_pred_merge[i * 2 + 1] * det_height
|
143 |
+
cv2.circle(
|
144 |
+
image,
|
145 |
+
(int(x_pred) + det_xmin, int(y_pred) + det_ymin),
|
146 |
+
1,
|
147 |
+
(0, 0, 255),
|
148 |
+
2,
|
149 |
+
)
|
150 |
+
cv2.imwrite("images/1_out.jpg", image)
|
151 |
+
|
152 |
+
|
153 |
+
if __name__ == "__main__":
|
154 |
+
net, detector = get_lmk_model()
|
155 |
+
demo_image(
|
156 |
+
"/apdcephfs/private_ahbanliang/codes/Real-ESRGAN-master/tmp_frames/yanikefu/frame00000046.png",
|
157 |
+
net,
|
158 |
+
detector,
|
159 |
+
)
|
third_party/PIPNet/lib/demo_video.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2, os
|
2 |
+
import sys
|
3 |
+
sys.path.insert(0, 'FaceBoxesV2')
|
4 |
+
sys.path.insert(0, '..')
|
5 |
+
import numpy as np
|
6 |
+
import pickle
|
7 |
+
import importlib
|
8 |
+
from math import floor
|
9 |
+
from faceboxes_detector import *
|
10 |
+
import time
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.parallel
|
15 |
+
import torch.optim as optim
|
16 |
+
import torch.utils.data
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchvision.datasets as datasets
|
20 |
+
import torchvision.models as models
|
21 |
+
|
22 |
+
from networks import *
|
23 |
+
import data_utils
|
24 |
+
from functions import *
|
25 |
+
|
26 |
+
if not len(sys.argv) == 3:
|
27 |
+
print('Format:')
|
28 |
+
print('python lib/demo_video.py config_file video_file')
|
29 |
+
exit(0)
|
30 |
+
experiment_name = sys.argv[1].split('/')[-1][:-3]
|
31 |
+
data_name = sys.argv[1].split('/')[-2]
|
32 |
+
config_path = '.experiments.{}.{}'.format(data_name, experiment_name)
|
33 |
+
video_file = sys.argv[2]
|
34 |
+
|
35 |
+
my_config = importlib.import_module(config_path, package='PIPNet')
|
36 |
+
Config = getattr(my_config, 'Config')
|
37 |
+
cfg = Config()
|
38 |
+
cfg.experiment_name = experiment_name
|
39 |
+
cfg.data_name = data_name
|
40 |
+
|
41 |
+
save_dir = os.path.join('./snapshots', cfg.data_name, cfg.experiment_name)
|
42 |
+
|
43 |
+
meanface_indices, reverse_index1, reverse_index2, max_len = get_meanface(os.path.join('data', cfg.data_name, 'meanface.txt'), cfg.num_nb)
|
44 |
+
|
45 |
+
if cfg.backbone == 'resnet18':
|
46 |
+
resnet18 = models.resnet18(pretrained=cfg.pretrained)
|
47 |
+
net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
48 |
+
elif cfg.backbone == 'resnet50':
|
49 |
+
resnet50 = models.resnet50(pretrained=cfg.pretrained)
|
50 |
+
net = Pip_resnet50(resnet50, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
51 |
+
elif cfg.backbone == 'resnet101':
|
52 |
+
resnet101 = models.resnet101(pretrained=cfg.pretrained)
|
53 |
+
net = Pip_resnet101(resnet101, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
54 |
+
else:
|
55 |
+
print('No such backbone!')
|
56 |
+
exit(0)
|
57 |
+
|
58 |
+
if cfg.use_gpu:
|
59 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
60 |
+
else:
|
61 |
+
device = torch.device("cpu")
|
62 |
+
net = net.to(device)
|
63 |
+
|
64 |
+
weight_file = os.path.join(save_dir, 'epoch%d.pth' % (cfg.num_epochs-1))
|
65 |
+
state_dict = torch.load(weight_file, map_location=device)
|
66 |
+
net.load_state_dict(state_dict)
|
67 |
+
|
68 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
69 |
+
std=[0.229, 0.224, 0.225])
|
70 |
+
preprocess = transforms.Compose([transforms.Resize((cfg.input_size, cfg.input_size)), transforms.ToTensor(), normalize])
|
71 |
+
|
72 |
+
def demo_video(video_file, net, preprocess, input_size, net_stride, num_nb, use_gpu, device):
|
73 |
+
detector = FaceBoxesDetector('FaceBoxes', 'FaceBoxesV2/weights/FaceBoxesV2.pth', use_gpu, device)
|
74 |
+
my_thresh = 0.9
|
75 |
+
det_box_scale = 1.2
|
76 |
+
|
77 |
+
net.eval()
|
78 |
+
if video_file == 'camera':
|
79 |
+
cap = cv2.VideoCapture(0)
|
80 |
+
else:
|
81 |
+
cap = cv2.VideoCapture(video_file)
|
82 |
+
if (cap.isOpened()== False):
|
83 |
+
print("Error opening video stream or file")
|
84 |
+
frame_width = int(cap.get(3))
|
85 |
+
frame_height = int(cap.get(4))
|
86 |
+
count = 0
|
87 |
+
while(cap.isOpened()):
|
88 |
+
ret, frame = cap.read()
|
89 |
+
if ret == True:
|
90 |
+
detections, _ = detector.detect(frame, my_thresh, 1)
|
91 |
+
for i in range(len(detections)):
|
92 |
+
det_xmin = detections[i][2]
|
93 |
+
det_ymin = detections[i][3]
|
94 |
+
det_width = detections[i][4]
|
95 |
+
det_height = detections[i][5]
|
96 |
+
det_xmax = det_xmin + det_width - 1
|
97 |
+
det_ymax = det_ymin + det_height - 1
|
98 |
+
|
99 |
+
det_xmin -= int(det_width * (det_box_scale-1)/2)
|
100 |
+
# remove a part of top area for alignment, see paper for details
|
101 |
+
det_ymin += int(det_height * (det_box_scale-1)/2)
|
102 |
+
det_xmax += int(det_width * (det_box_scale-1)/2)
|
103 |
+
det_ymax += int(det_height * (det_box_scale-1)/2)
|
104 |
+
det_xmin = max(det_xmin, 0)
|
105 |
+
det_ymin = max(det_ymin, 0)
|
106 |
+
det_xmax = min(det_xmax, frame_width-1)
|
107 |
+
det_ymax = min(det_ymax, frame_height-1)
|
108 |
+
det_width = det_xmax - det_xmin + 1
|
109 |
+
det_height = det_ymax - det_ymin + 1
|
110 |
+
cv2.rectangle(frame, (det_xmin, det_ymin), (det_xmax, det_ymax), (0, 0, 255), 2)
|
111 |
+
det_crop = frame[det_ymin:det_ymax, det_xmin:det_xmax, :]
|
112 |
+
det_crop = cv2.resize(det_crop, (input_size, input_size))
|
113 |
+
inputs = Image.fromarray(det_crop[:,:,::-1].astype('uint8'), 'RGB')
|
114 |
+
inputs = preprocess(inputs).unsqueeze(0)
|
115 |
+
inputs = inputs.to(device)
|
116 |
+
lms_pred_x, lms_pred_y, lms_pred_nb_x, lms_pred_nb_y, outputs_cls, max_cls = forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb)
|
117 |
+
lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten()
|
118 |
+
tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
119 |
+
tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
120 |
+
tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1,1)
|
121 |
+
tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1,1)
|
122 |
+
lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten()
|
123 |
+
lms_pred = lms_pred.cpu().numpy()
|
124 |
+
lms_pred_merge = lms_pred_merge.cpu().numpy()
|
125 |
+
for i in range(cfg.num_lms):
|
126 |
+
x_pred = lms_pred_merge[i*2] * det_width
|
127 |
+
y_pred = lms_pred_merge[i*2+1] * det_height
|
128 |
+
cv2.circle(frame, (int(x_pred)+det_xmin, int(y_pred)+det_ymin), 1, (0, 0, 255), 2)
|
129 |
+
|
130 |
+
count += 1
|
131 |
+
#cv2.imwrite('video_out2/'+str(count)+'.jpg', frame)
|
132 |
+
cv2.imshow('1', frame)
|
133 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
134 |
+
break
|
135 |
+
else:
|
136 |
+
break
|
137 |
+
|
138 |
+
cap.release()
|
139 |
+
cv2.destroyAllWindows()
|
140 |
+
|
141 |
+
demo_video(video_file, net, preprocess, cfg.input_size, cfg.net_stride, cfg.num_nb, cfg.use_gpu, device)
|
third_party/PIPNet/lib/functions.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image, ImageFilter
|
4 |
+
import logging
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import random
|
8 |
+
import time
|
9 |
+
from scipy.integrate import simps
|
10 |
+
|
11 |
+
|
12 |
+
def get_label(data_name, label_file, task_type=None):
|
13 |
+
label_path = os.path.join('data', data_name, label_file)
|
14 |
+
with open(label_path, 'r') as f:
|
15 |
+
labels = f.readlines()
|
16 |
+
labels = [x.strip().split() for x in labels]
|
17 |
+
if len(labels[0])==1:
|
18 |
+
return labels
|
19 |
+
|
20 |
+
labels_new = []
|
21 |
+
for label in labels:
|
22 |
+
image_name = label[0]
|
23 |
+
target = label[1:]
|
24 |
+
target = np.array([float(x) for x in target])
|
25 |
+
if task_type is None:
|
26 |
+
labels_new.append([image_name, target])
|
27 |
+
else:
|
28 |
+
labels_new.append([image_name, task_type, target])
|
29 |
+
return labels_new
|
30 |
+
|
31 |
+
def get_meanface(meanface_file, num_nb):
|
32 |
+
with open(meanface_file) as f:
|
33 |
+
meanface = f.readlines()[0]
|
34 |
+
|
35 |
+
meanface = meanface.strip().split()
|
36 |
+
meanface = [float(x) for x in meanface]
|
37 |
+
meanface = np.array(meanface).reshape(-1, 2)
|
38 |
+
# each landmark predicts num_nb neighbors
|
39 |
+
meanface_indices = []
|
40 |
+
for i in range(meanface.shape[0]):
|
41 |
+
pt = meanface[i,:]
|
42 |
+
dists = np.sum(np.power(pt-meanface, 2), axis=1)
|
43 |
+
indices = np.argsort(dists)
|
44 |
+
meanface_indices.append(indices[1:1+num_nb])
|
45 |
+
|
46 |
+
# each landmark predicted by X neighbors, X varies
|
47 |
+
meanface_indices_reversed = {}
|
48 |
+
for i in range(meanface.shape[0]):
|
49 |
+
meanface_indices_reversed[i] = [[],[]]
|
50 |
+
for i in range(meanface.shape[0]):
|
51 |
+
for j in range(num_nb):
|
52 |
+
meanface_indices_reversed[meanface_indices[i][j]][0].append(i)
|
53 |
+
meanface_indices_reversed[meanface_indices[i][j]][1].append(j)
|
54 |
+
|
55 |
+
max_len = 0
|
56 |
+
for i in range(meanface.shape[0]):
|
57 |
+
tmp_len = len(meanface_indices_reversed[i][0])
|
58 |
+
if tmp_len > max_len:
|
59 |
+
max_len = tmp_len
|
60 |
+
|
61 |
+
# tricks, make them have equal length for efficient computation
|
62 |
+
for i in range(meanface.shape[0]):
|
63 |
+
tmp_len = len(meanface_indices_reversed[i][0])
|
64 |
+
meanface_indices_reversed[i][0] += meanface_indices_reversed[i][0]*10
|
65 |
+
meanface_indices_reversed[i][1] += meanface_indices_reversed[i][1]*10
|
66 |
+
meanface_indices_reversed[i][0] = meanface_indices_reversed[i][0][:max_len]
|
67 |
+
meanface_indices_reversed[i][1] = meanface_indices_reversed[i][1][:max_len]
|
68 |
+
|
69 |
+
# make the indices 1-dim
|
70 |
+
reverse_index1 = []
|
71 |
+
reverse_index2 = []
|
72 |
+
for i in range(meanface.shape[0]):
|
73 |
+
reverse_index1 += meanface_indices_reversed[i][0]
|
74 |
+
reverse_index2 += meanface_indices_reversed[i][1]
|
75 |
+
return meanface_indices, reverse_index1, reverse_index2, max_len
|
76 |
+
|
77 |
+
def compute_loss_pip(outputs_map, outputs_local_x, outputs_local_y, outputs_nb_x, outputs_nb_y, labels_map, labels_local_x, labels_local_y, labels_nb_x, labels_nb_y, criterion_cls, criterion_reg, num_nb):
|
78 |
+
|
79 |
+
tmp_batch, tmp_channel, tmp_height, tmp_width = outputs_map.size()
|
80 |
+
labels_map = labels_map.view(tmp_batch*tmp_channel, -1)
|
81 |
+
labels_max_ids = torch.argmax(labels_map, 1)
|
82 |
+
labels_max_ids = labels_max_ids.view(-1, 1)
|
83 |
+
labels_max_ids_nb = labels_max_ids.repeat(1, num_nb).view(-1, 1)
|
84 |
+
|
85 |
+
outputs_local_x = outputs_local_x.view(tmp_batch*tmp_channel, -1)
|
86 |
+
outputs_local_x_select = torch.gather(outputs_local_x, 1, labels_max_ids)
|
87 |
+
outputs_local_y = outputs_local_y.view(tmp_batch*tmp_channel, -1)
|
88 |
+
outputs_local_y_select = torch.gather(outputs_local_y, 1, labels_max_ids)
|
89 |
+
outputs_nb_x = outputs_nb_x.view(tmp_batch*num_nb*tmp_channel, -1)
|
90 |
+
outputs_nb_x_select = torch.gather(outputs_nb_x, 1, labels_max_ids_nb)
|
91 |
+
outputs_nb_y = outputs_nb_y.view(tmp_batch*num_nb*tmp_channel, -1)
|
92 |
+
outputs_nb_y_select = torch.gather(outputs_nb_y, 1, labels_max_ids_nb)
|
93 |
+
|
94 |
+
labels_local_x = labels_local_x.view(tmp_batch*tmp_channel, -1)
|
95 |
+
labels_local_x_select = torch.gather(labels_local_x, 1, labels_max_ids)
|
96 |
+
labels_local_y = labels_local_y.view(tmp_batch*tmp_channel, -1)
|
97 |
+
labels_local_y_select = torch.gather(labels_local_y, 1, labels_max_ids)
|
98 |
+
labels_nb_x = labels_nb_x.view(tmp_batch*num_nb*tmp_channel, -1)
|
99 |
+
labels_nb_x_select = torch.gather(labels_nb_x, 1, labels_max_ids_nb)
|
100 |
+
labels_nb_y = labels_nb_y.view(tmp_batch*num_nb*tmp_channel, -1)
|
101 |
+
labels_nb_y_select = torch.gather(labels_nb_y, 1, labels_max_ids_nb)
|
102 |
+
|
103 |
+
labels_map = labels_map.view(tmp_batch, tmp_channel, tmp_height, tmp_width)
|
104 |
+
loss_map = criterion_cls(outputs_map, labels_map)
|
105 |
+
loss_x = criterion_reg(outputs_local_x_select, labels_local_x_select)
|
106 |
+
loss_y = criterion_reg(outputs_local_y_select, labels_local_y_select)
|
107 |
+
loss_nb_x = criterion_reg(outputs_nb_x_select, labels_nb_x_select)
|
108 |
+
loss_nb_y = criterion_reg(outputs_nb_y_select, labels_nb_y_select)
|
109 |
+
return loss_map, loss_x, loss_y, loss_nb_x, loss_nb_y
|
110 |
+
|
111 |
+
def train_model(det_head, net, train_loader, criterion_cls, criterion_reg, cls_loss_weight, reg_loss_weight, num_nb, optimizer, num_epochs, scheduler, save_dir, save_interval, device):
|
112 |
+
for epoch in range(num_epochs):
|
113 |
+
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
|
114 |
+
logging.info('Epoch {}/{}'.format(epoch, num_epochs - 1))
|
115 |
+
print('-' * 10)
|
116 |
+
logging.info('-' * 10)
|
117 |
+
net.train()
|
118 |
+
epoch_loss = 0.0
|
119 |
+
|
120 |
+
for i, data in enumerate(train_loader):
|
121 |
+
if det_head == 'pip':
|
122 |
+
inputs, labels_map, labels_x, labels_y, labels_nb_x, labels_nb_y = data
|
123 |
+
inputs = inputs.to(device)
|
124 |
+
labels_map = labels_map.to(device)
|
125 |
+
labels_x = labels_x.to(device)
|
126 |
+
labels_y = labels_y.to(device)
|
127 |
+
labels_nb_x = labels_nb_x.to(device)
|
128 |
+
labels_nb_y = labels_nb_y.to(device)
|
129 |
+
outputs_map, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y = net(inputs)
|
130 |
+
loss_map, loss_x, loss_y, loss_nb_x, loss_nb_y = compute_loss_pip(outputs_map, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y, labels_map, labels_x, labels_y, labels_nb_x, labels_nb_y, criterion_cls, criterion_reg, num_nb)
|
131 |
+
loss = cls_loss_weight*loss_map + reg_loss_weight*loss_x + reg_loss_weight*loss_y + reg_loss_weight*loss_nb_x + reg_loss_weight*loss_nb_y
|
132 |
+
else:
|
133 |
+
print('No such head:', det_head)
|
134 |
+
exit(0)
|
135 |
+
|
136 |
+
optimizer.zero_grad()
|
137 |
+
loss.backward()
|
138 |
+
optimizer.step()
|
139 |
+
if i%10 == 0:
|
140 |
+
if det_head == 'pip':
|
141 |
+
print('[Epoch {:d}/{:d}, Batch {:d}/{:d}] <Total loss: {:.6f}> <map loss: {:.6f}> <x loss: {:.6f}> <y loss: {:.6f}> <nbx loss: {:.6f}> <nby loss: {:.6f}>'.format(
|
142 |
+
epoch, num_epochs-1, i, len(train_loader)-1, loss.item(), cls_loss_weight*loss_map.item(), reg_loss_weight*loss_x.item(), reg_loss_weight*loss_y.item(), reg_loss_weight*loss_nb_x.item(), reg_loss_weight*loss_nb_y.item()))
|
143 |
+
logging.info('[Epoch {:d}/{:d}, Batch {:d}/{:d}] <Total loss: {:.6f}> <map loss: {:.6f}> <x loss: {:.6f}> <y loss: {:.6f}> <nbx loss: {:.6f}> <nby loss: {:.6f}>'.format(
|
144 |
+
epoch, num_epochs-1, i, len(train_loader)-1, loss.item(), cls_loss_weight*loss_map.item(), reg_loss_weight*loss_x.item(), reg_loss_weight*loss_y.item(), reg_loss_weight*loss_nb_x.item(), reg_loss_weight*loss_nb_y.item()))
|
145 |
+
else:
|
146 |
+
print('No such head:', det_head)
|
147 |
+
exit(0)
|
148 |
+
epoch_loss += loss.item()
|
149 |
+
epoch_loss /= len(train_loader)
|
150 |
+
if epoch%(save_interval-1) == 0 and epoch > 0:
|
151 |
+
filename = os.path.join(save_dir, 'epoch%d.pth' % epoch)
|
152 |
+
torch.save(net.state_dict(), filename)
|
153 |
+
print(filename, 'saved')
|
154 |
+
scheduler.step()
|
155 |
+
return net
|
156 |
+
|
157 |
+
def forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb):
|
158 |
+
net.eval()
|
159 |
+
with torch.no_grad():
|
160 |
+
outputs_cls, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y = net(inputs)
|
161 |
+
tmp_batch, tmp_channel, tmp_height, tmp_width = outputs_cls.size()
|
162 |
+
assert tmp_batch == 1
|
163 |
+
|
164 |
+
outputs_cls = outputs_cls.view(tmp_batch*tmp_channel, -1)
|
165 |
+
max_ids = torch.argmax(outputs_cls, 1)
|
166 |
+
max_cls = torch.max(outputs_cls, 1)[0]
|
167 |
+
max_ids = max_ids.view(-1, 1)
|
168 |
+
max_ids_nb = max_ids.repeat(1, num_nb).view(-1, 1)
|
169 |
+
|
170 |
+
outputs_x = outputs_x.view(tmp_batch*tmp_channel, -1)
|
171 |
+
outputs_x_select = torch.gather(outputs_x, 1, max_ids)
|
172 |
+
outputs_x_select = outputs_x_select.squeeze(1)
|
173 |
+
outputs_y = outputs_y.view(tmp_batch*tmp_channel, -1)
|
174 |
+
outputs_y_select = torch.gather(outputs_y, 1, max_ids)
|
175 |
+
outputs_y_select = outputs_y_select.squeeze(1)
|
176 |
+
|
177 |
+
outputs_nb_x = outputs_nb_x.view(tmp_batch*num_nb*tmp_channel, -1)
|
178 |
+
outputs_nb_x_select = torch.gather(outputs_nb_x, 1, max_ids_nb)
|
179 |
+
outputs_nb_x_select = outputs_nb_x_select.squeeze(1).view(-1, num_nb)
|
180 |
+
outputs_nb_y = outputs_nb_y.view(tmp_batch*num_nb*tmp_channel, -1)
|
181 |
+
outputs_nb_y_select = torch.gather(outputs_nb_y, 1, max_ids_nb)
|
182 |
+
outputs_nb_y_select = outputs_nb_y_select.squeeze(1).view(-1, num_nb)
|
183 |
+
|
184 |
+
tmp_x = (max_ids%tmp_width).view(-1,1).float()+outputs_x_select.view(-1,1)
|
185 |
+
tmp_y = (max_ids//tmp_width).view(-1,1).float()+outputs_y_select.view(-1,1)
|
186 |
+
tmp_x /= 1.0 * input_size / net_stride
|
187 |
+
tmp_y /= 1.0 * input_size / net_stride
|
188 |
+
|
189 |
+
tmp_nb_x = (max_ids%tmp_width).view(-1,1).float()+outputs_nb_x_select
|
190 |
+
tmp_nb_y = (max_ids//tmp_width).view(-1,1).float()+outputs_nb_y_select
|
191 |
+
tmp_nb_x = tmp_nb_x.view(-1, num_nb)
|
192 |
+
tmp_nb_y = tmp_nb_y.view(-1, num_nb)
|
193 |
+
tmp_nb_x /= 1.0 * input_size / net_stride
|
194 |
+
tmp_nb_y /= 1.0 * input_size / net_stride
|
195 |
+
|
196 |
+
return tmp_x, tmp_y, tmp_nb_x, tmp_nb_y, outputs_cls, max_cls
|
197 |
+
|
198 |
+
def compute_nme(lms_pred, lms_gt, norm):
|
199 |
+
lms_pred = lms_pred.reshape((-1, 2))
|
200 |
+
lms_gt = lms_gt.reshape((-1, 2))
|
201 |
+
nme = np.mean(np.linalg.norm(lms_pred - lms_gt, axis=1)) / norm
|
202 |
+
return nme
|
203 |
+
|
204 |
+
def compute_fr_and_auc(nmes, thres=0.1, step=0.0001):
|
205 |
+
num_data = len(nmes)
|
206 |
+
xs = np.arange(0, thres + step, step)
|
207 |
+
ys = np.array([np.count_nonzero(nmes <= x) for x in xs]) / float(num_data)
|
208 |
+
fr = 1.0 - ys[-1]
|
209 |
+
auc = simps(ys, x=xs) / thres
|
210 |
+
return fr, auc
|
third_party/PIPNet/lib/functions_gssl.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image, ImageFilter
|
4 |
+
import logging
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import random
|
8 |
+
|
9 |
+
def get_label(data_name, label_file, task_type=None):
|
10 |
+
label_path = os.path.join('data', data_name, label_file)
|
11 |
+
with open(label_path, 'r') as f:
|
12 |
+
labels = f.readlines()
|
13 |
+
labels = [x.strip().split() for x in labels]
|
14 |
+
if len(labels[0])==1:
|
15 |
+
return labels
|
16 |
+
|
17 |
+
labels_new = []
|
18 |
+
for label in labels:
|
19 |
+
image_name = label[0]
|
20 |
+
target = label[1:]
|
21 |
+
target = np.array([float(x) for x in target])
|
22 |
+
if task_type is None:
|
23 |
+
labels_new.append([image_name, target])
|
24 |
+
else:
|
25 |
+
labels_new.append([image_name, task_type, target])
|
26 |
+
return labels_new
|
27 |
+
|
28 |
+
def get_meanface(meanface_file, num_nb):
|
29 |
+
with open(meanface_file) as f:
|
30 |
+
meanface = f.readlines()[0]
|
31 |
+
|
32 |
+
meanface = meanface.strip().split()
|
33 |
+
meanface = [float(x) for x in meanface]
|
34 |
+
meanface = np.array(meanface).reshape(-1, 2)
|
35 |
+
# each landmark predicts num_nb neighbors
|
36 |
+
meanface_indices = []
|
37 |
+
for i in range(meanface.shape[0]):
|
38 |
+
pt = meanface[i,:]
|
39 |
+
dists = np.sum(np.power(pt-meanface, 2), axis=1)
|
40 |
+
indices = np.argsort(dists)
|
41 |
+
meanface_indices.append(indices[1:1+num_nb])
|
42 |
+
|
43 |
+
# each landmark predicted by X neighbors, X varies
|
44 |
+
meanface_indices_reversed = {}
|
45 |
+
for i in range(meanface.shape[0]):
|
46 |
+
meanface_indices_reversed[i] = [[],[]]
|
47 |
+
for i in range(meanface.shape[0]):
|
48 |
+
for j in range(num_nb):
|
49 |
+
meanface_indices_reversed[meanface_indices[i][j]][0].append(i)
|
50 |
+
meanface_indices_reversed[meanface_indices[i][j]][1].append(j)
|
51 |
+
|
52 |
+
max_len = 0
|
53 |
+
for i in range(meanface.shape[0]):
|
54 |
+
tmp_len = len(meanface_indices_reversed[i][0])
|
55 |
+
if tmp_len > max_len:
|
56 |
+
max_len = tmp_len
|
57 |
+
|
58 |
+
# tricks, make them have equal length for efficient computation
|
59 |
+
for i in range(meanface.shape[0]):
|
60 |
+
tmp_len = len(meanface_indices_reversed[i][0])
|
61 |
+
meanface_indices_reversed[i][0] += meanface_indices_reversed[i][0]*10
|
62 |
+
meanface_indices_reversed[i][1] += meanface_indices_reversed[i][1]*10
|
63 |
+
meanface_indices_reversed[i][0] = meanface_indices_reversed[i][0][:max_len]
|
64 |
+
meanface_indices_reversed[i][1] = meanface_indices_reversed[i][1][:max_len]
|
65 |
+
|
66 |
+
# make the indices 1-dim
|
67 |
+
reverse_index1 = []
|
68 |
+
reverse_index2 = []
|
69 |
+
for i in range(meanface.shape[0]):
|
70 |
+
reverse_index1 += meanface_indices_reversed[i][0]
|
71 |
+
reverse_index2 += meanface_indices_reversed[i][1]
|
72 |
+
return meanface_indices, reverse_index1, reverse_index2, max_len
|
73 |
+
|
74 |
+
def compute_loss_pip(outputs_map1, outputs_map2, outputs_map3, outputs_local_x, outputs_local_y, outputs_nb_x, outputs_nb_y, labels_map1, labels_map2, labels_map3, labels_local_x, labels_local_y, labels_nb_x, labels_nb_y, masks_map1, masks_map2, masks_map3, masks_local_x, masks_local_y, masks_nb_x, masks_nb_y, criterion_cls, criterion_reg, num_nb):
|
75 |
+
|
76 |
+
tmp_batch, tmp_channel, tmp_height, tmp_width = outputs_map1.size()
|
77 |
+
labels_map1 = labels_map1.view(tmp_batch*tmp_channel, -1)
|
78 |
+
labels_max_ids = torch.argmax(labels_map1, 1)
|
79 |
+
labels_max_ids = labels_max_ids.view(-1, 1)
|
80 |
+
labels_max_ids_nb = labels_max_ids.repeat(1, num_nb).view(-1, 1)
|
81 |
+
|
82 |
+
outputs_local_x = outputs_local_x.view(tmp_batch*tmp_channel, -1)
|
83 |
+
outputs_local_x_select = torch.gather(outputs_local_x, 1, labels_max_ids)
|
84 |
+
outputs_local_y = outputs_local_y.view(tmp_batch*tmp_channel, -1)
|
85 |
+
outputs_local_y_select = torch.gather(outputs_local_y, 1, labels_max_ids)
|
86 |
+
outputs_nb_x = outputs_nb_x.view(tmp_batch*num_nb*tmp_channel, -1)
|
87 |
+
outputs_nb_x_select = torch.gather(outputs_nb_x, 1, labels_max_ids_nb)
|
88 |
+
outputs_nb_y = outputs_nb_y.view(tmp_batch*num_nb*tmp_channel, -1)
|
89 |
+
outputs_nb_y_select = torch.gather(outputs_nb_y, 1, labels_max_ids_nb)
|
90 |
+
|
91 |
+
labels_local_x = labels_local_x.view(tmp_batch*tmp_channel, -1)
|
92 |
+
labels_local_x_select = torch.gather(labels_local_x, 1, labels_max_ids)
|
93 |
+
labels_local_y = labels_local_y.view(tmp_batch*tmp_channel, -1)
|
94 |
+
labels_local_y_select = torch.gather(labels_local_y, 1, labels_max_ids)
|
95 |
+
labels_nb_x = labels_nb_x.view(tmp_batch*num_nb*tmp_channel, -1)
|
96 |
+
labels_nb_x_select = torch.gather(labels_nb_x, 1, labels_max_ids_nb)
|
97 |
+
labels_nb_y = labels_nb_y.view(tmp_batch*num_nb*tmp_channel, -1)
|
98 |
+
labels_nb_y_select = torch.gather(labels_nb_y, 1, labels_max_ids_nb)
|
99 |
+
|
100 |
+
masks_local_x = masks_local_x.view(tmp_batch*tmp_channel, -1)
|
101 |
+
masks_local_x_select = torch.gather(masks_local_x, 1, labels_max_ids)
|
102 |
+
masks_local_y = masks_local_y.view(tmp_batch*tmp_channel, -1)
|
103 |
+
masks_local_y_select = torch.gather(masks_local_y, 1, labels_max_ids)
|
104 |
+
masks_nb_x = masks_nb_x.view(tmp_batch*num_nb*tmp_channel, -1)
|
105 |
+
masks_nb_x_select = torch.gather(masks_nb_x, 1, labels_max_ids_nb)
|
106 |
+
masks_nb_y = masks_nb_y.view(tmp_batch*num_nb*tmp_channel, -1)
|
107 |
+
masks_nb_y_select = torch.gather(masks_nb_y, 1, labels_max_ids_nb)
|
108 |
+
|
109 |
+
##########################################
|
110 |
+
outputs_map1 = outputs_map1.view(tmp_batch*tmp_channel, -1)
|
111 |
+
outputs_map2 = outputs_map2.view(tmp_batch*tmp_channel, -1)
|
112 |
+
outputs_map3 = outputs_map3.view(tmp_batch*tmp_channel, -1)
|
113 |
+
labels_map2 = labels_map2.view(tmp_batch*tmp_channel, -1)
|
114 |
+
labels_map3 = labels_map3.view(tmp_batch*tmp_channel, -1)
|
115 |
+
masks_map1 = masks_map1.view(tmp_batch*tmp_channel, -1)
|
116 |
+
masks_map2 = masks_map2.view(tmp_batch*tmp_channel, -1)
|
117 |
+
masks_map3 = masks_map3.view(tmp_batch*tmp_channel, -1)
|
118 |
+
outputs_map = torch.cat([outputs_map1, outputs_map2, outputs_map3], 1)
|
119 |
+
labels_map = torch.cat([labels_map1, labels_map2, labels_map3], 1)
|
120 |
+
masks_map = torch.cat([masks_map1, masks_map2, masks_map3], 1)
|
121 |
+
loss_map = criterion_cls(outputs_map*masks_map, labels_map*masks_map)
|
122 |
+
if not masks_map.sum() == 0:
|
123 |
+
loss_map /= masks_map.sum()
|
124 |
+
##########################################
|
125 |
+
|
126 |
+
loss_x = criterion_reg(outputs_local_x_select*masks_local_x_select, labels_local_x_select*masks_local_x_select)
|
127 |
+
if not masks_local_x_select.sum() == 0:
|
128 |
+
loss_x /= masks_local_x_select.sum()
|
129 |
+
loss_y = criterion_reg(outputs_local_y_select*masks_local_y_select, labels_local_y_select*masks_local_y_select)
|
130 |
+
if not masks_local_y_select.sum() == 0:
|
131 |
+
loss_y /= masks_local_y_select.sum()
|
132 |
+
loss_nb_x = criterion_reg(outputs_nb_x_select*masks_nb_x_select, labels_nb_x_select*masks_nb_x_select)
|
133 |
+
if not masks_nb_x_select.sum() == 0:
|
134 |
+
loss_nb_x /= masks_nb_x_select.sum()
|
135 |
+
loss_nb_y = criterion_reg(outputs_nb_y_select*masks_nb_y_select, labels_nb_y_select*masks_nb_y_select)
|
136 |
+
if not masks_nb_y_select.sum() == 0:
|
137 |
+
loss_nb_y /= masks_nb_y_select.sum()
|
138 |
+
return loss_map, loss_x, loss_y, loss_nb_x, loss_nb_y
|
139 |
+
|
140 |
+
def train_model(det_head, net, train_loader, criterion_cls, criterion_reg, cls_loss_weight, reg_loss_weight, num_nb, optimizer, num_epochs, scheduler, save_dir, save_interval, device):
|
141 |
+
for epoch in range(num_epochs):
|
142 |
+
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
|
143 |
+
logging.info('Epoch {}/{}'.format(epoch, num_epochs - 1))
|
144 |
+
print('-' * 10)
|
145 |
+
logging.info('-' * 10)
|
146 |
+
net.train()
|
147 |
+
epoch_loss = 0.0
|
148 |
+
|
149 |
+
for i, data in enumerate(train_loader):
|
150 |
+
if det_head == 'pip':
|
151 |
+
inputs, labels_map1, labels_map2, labels_map3, labels_x, labels_y, labels_nb_x, labels_nb_y, masks_map1, masks_map2, masks_map3, masks_x, masks_y, masks_nb_x, masks_nb_y = data
|
152 |
+
inputs = inputs.to(device)
|
153 |
+
labels_map1 = labels_map1.to(device)
|
154 |
+
labels_map2 = labels_map2.to(device)
|
155 |
+
labels_map3 = labels_map3.to(device)
|
156 |
+
labels_x = labels_x.to(device)
|
157 |
+
labels_y = labels_y.to(device)
|
158 |
+
labels_nb_x = labels_nb_x.to(device)
|
159 |
+
labels_nb_y = labels_nb_y.to(device)
|
160 |
+
masks_map1 = masks_map1.to(device)
|
161 |
+
masks_map2 = masks_map2.to(device)
|
162 |
+
masks_map3 = masks_map3.to(device)
|
163 |
+
masks_x = masks_x.to(device)
|
164 |
+
masks_y = masks_y.to(device)
|
165 |
+
masks_nb_x = masks_nb_x.to(device)
|
166 |
+
masks_nb_y = masks_nb_y.to(device)
|
167 |
+
outputs_map1, outputs_map2, outputs_map3, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y = net(inputs)
|
168 |
+
loss_map, loss_x, loss_y, loss_nb_x, loss_nb_y = compute_loss_pip(outputs_map1, outputs_map2, outputs_map3, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y, labels_map1, labels_map2, labels_map3, labels_x, labels_y, labels_nb_x, labels_nb_y, masks_map1, masks_map2, masks_map3, masks_x, masks_y, masks_nb_x, masks_nb_y, criterion_cls, criterion_reg, num_nb)
|
169 |
+
loss = cls_loss_weight*loss_map + reg_loss_weight*loss_x + reg_loss_weight*loss_y + reg_loss_weight*loss_nb_x + reg_loss_weight*loss_nb_y
|
170 |
+
else:
|
171 |
+
print('No such head:', det_head)
|
172 |
+
exit(0)
|
173 |
+
|
174 |
+
optimizer.zero_grad()
|
175 |
+
loss.backward()
|
176 |
+
optimizer.step()
|
177 |
+
if i%10 == 0:
|
178 |
+
if det_head == 'pip':
|
179 |
+
print('[Epoch {:d}/{:d}, Batch {:d}/{:d}] <Total loss: {:.6f}> <map loss: {:.6f}> <x loss: {:.6f}> <y loss: {:.6f}> <nbx loss: {:.6f}> <nby loss: {:.6f}>'.format(
|
180 |
+
epoch, num_epochs-1, i, len(train_loader)-1, loss.item(), cls_loss_weight*loss_map.item(), reg_loss_weight*loss_x.item(), reg_loss_weight*loss_y.item(), reg_loss_weight*loss_nb_x.item(), reg_loss_weight*loss_nb_y.item()))
|
181 |
+
logging.info('[Epoch {:d}/{:d}, Batch {:d}/{:d}] <Total loss: {:.6f}> <map loss: {:.6f}> <x loss: {:.6f}> <y loss: {:.6f}> <nbx loss: {:.6f}> <nby loss: {:.6f}>'.format(
|
182 |
+
epoch, num_epochs-1, i, len(train_loader)-1, loss.item(), cls_loss_weight*loss_map.item(), reg_loss_weight*loss_x.item(), reg_loss_weight*loss_y.item(), reg_loss_weight*loss_nb_x.item(), reg_loss_weight*loss_nb_y.item()))
|
183 |
+
else:
|
184 |
+
print('No such head:', det_head)
|
185 |
+
exit(0)
|
186 |
+
epoch_loss += loss.item()
|
187 |
+
epoch_loss /= len(train_loader)
|
188 |
+
if epoch%(save_interval-1) == 0 and epoch > 0:
|
189 |
+
filename = os.path.join(save_dir, 'epoch%d.pth' % epoch)
|
190 |
+
torch.save(net.state_dict(), filename)
|
191 |
+
print(filename, 'saved')
|
192 |
+
scheduler.step()
|
193 |
+
return net
|
194 |
+
|
195 |
+
def forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb):
|
196 |
+
net.eval()
|
197 |
+
with torch.no_grad():
|
198 |
+
outputs_cls1, outputs_cls2, outputs_cls3, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y = net(inputs)
|
199 |
+
tmp_batch, tmp_channel, tmp_height, tmp_width = outputs_cls1.size()
|
200 |
+
assert tmp_batch == 1
|
201 |
+
|
202 |
+
outputs_cls1 = outputs_cls1.view(tmp_batch*tmp_channel, -1)
|
203 |
+
max_ids = torch.argmax(outputs_cls1, 1)
|
204 |
+
max_cls = torch.max(outputs_cls1, 1)[0]
|
205 |
+
max_ids = max_ids.view(-1, 1)
|
206 |
+
max_ids_nb = max_ids.repeat(1, num_nb).view(-1, 1)
|
207 |
+
|
208 |
+
outputs_x = outputs_x.view(tmp_batch*tmp_channel, -1)
|
209 |
+
outputs_x_select = torch.gather(outputs_x, 1, max_ids)
|
210 |
+
outputs_x_select = outputs_x_select.squeeze(1)
|
211 |
+
outputs_y = outputs_y.view(tmp_batch*tmp_channel, -1)
|
212 |
+
outputs_y_select = torch.gather(outputs_y, 1, max_ids)
|
213 |
+
outputs_y_select = outputs_y_select.squeeze(1)
|
214 |
+
|
215 |
+
outputs_nb_x = outputs_nb_x.view(tmp_batch*num_nb*tmp_channel, -1)
|
216 |
+
outputs_nb_x_select = torch.gather(outputs_nb_x, 1, max_ids_nb)
|
217 |
+
outputs_nb_x_select = outputs_nb_x_select.squeeze(1).view(-1, num_nb)
|
218 |
+
outputs_nb_y = outputs_nb_y.view(tmp_batch*num_nb*tmp_channel, -1)
|
219 |
+
outputs_nb_y_select = torch.gather(outputs_nb_y, 1, max_ids_nb)
|
220 |
+
outputs_nb_y_select = outputs_nb_y_select.squeeze(1).view(-1, num_nb)
|
221 |
+
|
222 |
+
tmp_x = (max_ids%tmp_width).view(-1,1).float()+outputs_x_select.view(-1,1)
|
223 |
+
tmp_y = (max_ids//tmp_width).view(-1,1).float()+outputs_y_select.view(-1,1)
|
224 |
+
tmp_x /= 1.0 * input_size / net_stride
|
225 |
+
tmp_y /= 1.0 * input_size / net_stride
|
226 |
+
|
227 |
+
tmp_nb_x = (max_ids%tmp_width).view(-1,1).float()+outputs_nb_x_select
|
228 |
+
tmp_nb_y = (max_ids//tmp_width).view(-1,1).float()+outputs_nb_y_select
|
229 |
+
tmp_nb_x = tmp_nb_x.view(-1, num_nb)
|
230 |
+
tmp_nb_y = tmp_nb_y.view(-1, num_nb)
|
231 |
+
tmp_nb_x /= 1.0 * input_size / net_stride
|
232 |
+
tmp_nb_y /= 1.0 * input_size / net_stride
|
233 |
+
|
234 |
+
return tmp_x, tmp_y, tmp_nb_x, tmp_nb_y, [outputs_cls1, outputs_cls2, outputs_cls3], max_cls
|
235 |
+
|
236 |
+
def compute_nme(lms_pred, lms_gt, norm):
|
237 |
+
lms_pred = lms_pred.reshape((-1, 2))
|
238 |
+
lms_gt = lms_gt.reshape((-1, 2))
|
239 |
+
nme = np.mean(np.linalg.norm(lms_pred - lms_gt, axis=1)) / norm
|
240 |
+
return nme
|
241 |
+
|
third_party/PIPNet/lib/mobilenetv3.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Creates a MobileNetV3 Model as defined in:
|
3 |
+
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019).
|
4 |
+
Searching for MobileNetV3
|
5 |
+
arXiv preprint arXiv:1905.02244.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import math
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['mobilenetv3_large', 'mobilenetv3_small']
|
14 |
+
|
15 |
+
|
16 |
+
def _make_divisible(v, divisor, min_value=None):
|
17 |
+
"""
|
18 |
+
This function is taken from the original tf repo.
|
19 |
+
It ensures that all layers have a channel number that is divisible by 8
|
20 |
+
It can be seen here:
|
21 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
22 |
+
:param v:
|
23 |
+
:param divisor:
|
24 |
+
:param min_value:
|
25 |
+
:return:
|
26 |
+
"""
|
27 |
+
if min_value is None:
|
28 |
+
min_value = divisor
|
29 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
30 |
+
# Make sure that round down does not go down by more than 10%.
|
31 |
+
if new_v < 0.9 * v:
|
32 |
+
new_v += divisor
|
33 |
+
return new_v
|
34 |
+
|
35 |
+
|
36 |
+
class h_sigmoid(nn.Module):
|
37 |
+
def __init__(self, inplace=True):
|
38 |
+
super(h_sigmoid, self).__init__()
|
39 |
+
self.relu = nn.ReLU6(inplace=inplace)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
return self.relu(x + 3) / 6
|
43 |
+
|
44 |
+
|
45 |
+
class h_swish(nn.Module):
|
46 |
+
def __init__(self, inplace=True):
|
47 |
+
super(h_swish, self).__init__()
|
48 |
+
self.sigmoid = h_sigmoid(inplace=inplace)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
return x * self.sigmoid(x)
|
52 |
+
|
53 |
+
|
54 |
+
class SELayer(nn.Module):
|
55 |
+
def __init__(self, channel, reduction=4):
|
56 |
+
super(SELayer, self).__init__()
|
57 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
58 |
+
self.fc = nn.Sequential(
|
59 |
+
nn.Linear(channel, _make_divisible(channel // reduction, 8)),
|
60 |
+
nn.ReLU(inplace=True),
|
61 |
+
nn.Linear(_make_divisible(channel // reduction, 8), channel),
|
62 |
+
h_sigmoid()
|
63 |
+
)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
b, c, _, _ = x.size()
|
67 |
+
y = self.avg_pool(x).view(b, c)
|
68 |
+
y = self.fc(y).view(b, c, 1, 1)
|
69 |
+
return x * y
|
70 |
+
|
71 |
+
|
72 |
+
def conv_3x3_bn(inp, oup, stride):
|
73 |
+
return nn.Sequential(
|
74 |
+
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
75 |
+
nn.BatchNorm2d(oup),
|
76 |
+
h_swish()
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def conv_1x1_bn(inp, oup):
|
81 |
+
return nn.Sequential(
|
82 |
+
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
83 |
+
nn.BatchNorm2d(oup),
|
84 |
+
h_swish()
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
class InvertedResidual(nn.Module):
|
89 |
+
def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
|
90 |
+
super(InvertedResidual, self).__init__()
|
91 |
+
assert stride in [1, 2]
|
92 |
+
|
93 |
+
self.identity = stride == 1 and inp == oup
|
94 |
+
|
95 |
+
if inp == hidden_dim:
|
96 |
+
self.conv = nn.Sequential(
|
97 |
+
# dw
|
98 |
+
nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False),
|
99 |
+
nn.BatchNorm2d(hidden_dim),
|
100 |
+
h_swish() if use_hs else nn.ReLU(inplace=True),
|
101 |
+
# Squeeze-and-Excite
|
102 |
+
SELayer(hidden_dim) if use_se else nn.Identity(),
|
103 |
+
# pw-linear
|
104 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
105 |
+
nn.BatchNorm2d(oup),
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
self.conv = nn.Sequential(
|
109 |
+
# pw
|
110 |
+
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
111 |
+
nn.BatchNorm2d(hidden_dim),
|
112 |
+
h_swish() if use_hs else nn.ReLU(inplace=True),
|
113 |
+
# dw
|
114 |
+
nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False),
|
115 |
+
nn.BatchNorm2d(hidden_dim),
|
116 |
+
# Squeeze-and-Excite
|
117 |
+
SELayer(hidden_dim) if use_se else nn.Identity(),
|
118 |
+
h_swish() if use_hs else nn.ReLU(inplace=True),
|
119 |
+
# pw-linear
|
120 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
121 |
+
nn.BatchNorm2d(oup),
|
122 |
+
)
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
if self.identity:
|
126 |
+
return x + self.conv(x)
|
127 |
+
else:
|
128 |
+
return self.conv(x)
|
129 |
+
|
130 |
+
|
131 |
+
class MobileNetV3(nn.Module):
|
132 |
+
def __init__(self, cfgs, mode, num_classes=1000, width_mult=1.):
|
133 |
+
super(MobileNetV3, self).__init__()
|
134 |
+
# setting of inverted residual blocks
|
135 |
+
self.cfgs = cfgs
|
136 |
+
assert mode in ['large', 'small']
|
137 |
+
|
138 |
+
# building first layer
|
139 |
+
input_channel = _make_divisible(16 * width_mult, 8)
|
140 |
+
layers = [conv_3x3_bn(3, input_channel, 2)]
|
141 |
+
# building inverted residual blocks
|
142 |
+
block = InvertedResidual
|
143 |
+
for k, t, c, use_se, use_hs, s in self.cfgs:
|
144 |
+
output_channel = _make_divisible(c * width_mult, 8)
|
145 |
+
exp_size = _make_divisible(input_channel * t, 8)
|
146 |
+
layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
|
147 |
+
input_channel = output_channel
|
148 |
+
self.features = nn.Sequential(*layers)
|
149 |
+
# building last several layers
|
150 |
+
self.conv = conv_1x1_bn(input_channel, exp_size)
|
151 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
152 |
+
output_channel = {'large': 1280, 'small': 1024}
|
153 |
+
output_channel = _make_divisible(output_channel[mode] * width_mult, 8) if width_mult > 1.0 else output_channel[mode]
|
154 |
+
self.classifier = nn.Sequential(
|
155 |
+
nn.Linear(exp_size, output_channel),
|
156 |
+
h_swish(),
|
157 |
+
nn.Dropout(0.2),
|
158 |
+
nn.Linear(output_channel, num_classes),
|
159 |
+
)
|
160 |
+
|
161 |
+
self._initialize_weights()
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
x = self.features(x)
|
165 |
+
x = self.conv(x)
|
166 |
+
x = self.avgpool(x)
|
167 |
+
x = x.view(x.size(0), -1)
|
168 |
+
x = self.classifier(x)
|
169 |
+
return x
|
170 |
+
|
171 |
+
def _initialize_weights(self):
|
172 |
+
for m in self.modules():
|
173 |
+
if isinstance(m, nn.Conv2d):
|
174 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
175 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
176 |
+
if m.bias is not None:
|
177 |
+
m.bias.data.zero_()
|
178 |
+
elif isinstance(m, nn.BatchNorm2d):
|
179 |
+
m.weight.data.fill_(1)
|
180 |
+
m.bias.data.zero_()
|
181 |
+
elif isinstance(m, nn.Linear):
|
182 |
+
m.weight.data.normal_(0, 0.01)
|
183 |
+
m.bias.data.zero_()
|
184 |
+
|
185 |
+
|
186 |
+
def mobilenetv3_large(**kwargs):
|
187 |
+
"""
|
188 |
+
Constructs a MobileNetV3-Large model
|
189 |
+
"""
|
190 |
+
cfgs = [
|
191 |
+
# k, t, c, SE, HS, s
|
192 |
+
[3, 1, 16, 0, 0, 1],
|
193 |
+
[3, 4, 24, 0, 0, 2],
|
194 |
+
[3, 3, 24, 0, 0, 1],
|
195 |
+
[5, 3, 40, 1, 0, 2],
|
196 |
+
[5, 3, 40, 1, 0, 1],
|
197 |
+
[5, 3, 40, 1, 0, 1],
|
198 |
+
[3, 6, 80, 0, 1, 2],
|
199 |
+
[3, 2.5, 80, 0, 1, 1],
|
200 |
+
[3, 2.3, 80, 0, 1, 1],
|
201 |
+
[3, 2.3, 80, 0, 1, 1],
|
202 |
+
[3, 6, 112, 1, 1, 1],
|
203 |
+
[3, 6, 112, 1, 1, 1],
|
204 |
+
[5, 6, 160, 1, 1, 2],
|
205 |
+
[5, 6, 160, 1, 1, 1],
|
206 |
+
[5, 6, 160, 1, 1, 1]
|
207 |
+
]
|
208 |
+
return MobileNetV3(cfgs, mode='large', **kwargs)
|
209 |
+
|
210 |
+
|
211 |
+
def mobilenetv3_small(**kwargs):
|
212 |
+
"""
|
213 |
+
Constructs a MobileNetV3-Small model
|
214 |
+
"""
|
215 |
+
cfgs = [
|
216 |
+
# k, t, c, SE, HS, s
|
217 |
+
[3, 1, 16, 1, 0, 2],
|
218 |
+
[3, 4.5, 24, 0, 0, 2],
|
219 |
+
[3, 3.67, 24, 0, 0, 1],
|
220 |
+
[5, 4, 40, 1, 1, 2],
|
221 |
+
[5, 6, 40, 1, 1, 1],
|
222 |
+
[5, 6, 40, 1, 1, 1],
|
223 |
+
[5, 3, 48, 1, 1, 1],
|
224 |
+
[5, 3, 48, 1, 1, 1],
|
225 |
+
[5, 6, 96, 1, 1, 2],
|
226 |
+
[5, 6, 96, 1, 1, 1],
|
227 |
+
[5, 6, 96, 1, 1, 1],
|
228 |
+
]
|
229 |
+
|
230 |
+
return MobileNetV3(cfgs, mode='small', **kwargs)
|
231 |
+
|
232 |
+
|
233 |
+
|
third_party/PIPNet/lib/networks.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision.models as models
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# net_stride output_size
|
8 |
+
# 128 2x2
|
9 |
+
# 64 4x4
|
10 |
+
# 32 8x8
|
11 |
+
# pip regression, resnet101
|
12 |
+
class Pip_resnet101(nn.Module):
|
13 |
+
def __init__(self, resnet, num_nb, num_lms=68, input_size=256, net_stride=32):
|
14 |
+
super(Pip_resnet101, self).__init__()
|
15 |
+
self.num_nb = num_nb
|
16 |
+
self.num_lms = num_lms
|
17 |
+
self.input_size = input_size
|
18 |
+
self.net_stride = net_stride
|
19 |
+
self.conv1 = resnet.conv1
|
20 |
+
self.bn1 = resnet.bn1
|
21 |
+
self.maxpool = resnet.maxpool
|
22 |
+
self.sigmoid = nn.Sigmoid()
|
23 |
+
self.layer1 = resnet.layer1
|
24 |
+
self.layer2 = resnet.layer2
|
25 |
+
self.layer3 = resnet.layer3
|
26 |
+
self.layer4 = resnet.layer4
|
27 |
+
if self.net_stride == 128:
|
28 |
+
self.layer5 = nn.Conv2d(2048, 512, kernel_size=3, stride=2, padding=1)
|
29 |
+
self.bn5 = nn.BatchNorm2d(512)
|
30 |
+
self.layer6 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
|
31 |
+
self.bn6 = nn.BatchNorm2d(512)
|
32 |
+
# init
|
33 |
+
nn.init.normal_(self.layer5.weight, std=0.001)
|
34 |
+
if self.layer5.bias is not None:
|
35 |
+
nn.init.constant_(self.layer5.bias, 0)
|
36 |
+
nn.init.constant_(self.bn5.weight, 1)
|
37 |
+
nn.init.constant_(self.bn5.bias, 0)
|
38 |
+
|
39 |
+
nn.init.normal_(self.layer6.weight, std=0.001)
|
40 |
+
if self.layer6.bias is not None:
|
41 |
+
nn.init.constant_(self.layer6.bias, 0)
|
42 |
+
nn.init.constant_(self.bn6.weight, 1)
|
43 |
+
nn.init.constant_(self.bn6.bias, 0)
|
44 |
+
elif self.net_stride == 64:
|
45 |
+
self.layer5 = nn.Conv2d(2048, 512, kernel_size=3, stride=2, padding=1)
|
46 |
+
self.bn5 = nn.BatchNorm2d(512)
|
47 |
+
# init
|
48 |
+
nn.init.normal_(self.layer5.weight, std=0.001)
|
49 |
+
if self.layer5.bias is not None:
|
50 |
+
nn.init.constant_(self.layer5.bias, 0)
|
51 |
+
nn.init.constant_(self.bn5.weight, 1)
|
52 |
+
nn.init.constant_(self.bn5.bias, 0)
|
53 |
+
elif self.net_stride == 32:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
print('No such net_stride!')
|
57 |
+
exit(0)
|
58 |
+
|
59 |
+
self.cls_layer = nn.Conv2d(2048, num_lms, kernel_size=1, stride=1, padding=0)
|
60 |
+
self.x_layer = nn.Conv2d(2048, num_lms, kernel_size=1, stride=1, padding=0)
|
61 |
+
self.y_layer = nn.Conv2d(2048, num_lms, kernel_size=1, stride=1, padding=0)
|
62 |
+
self.nb_x_layer = nn.Conv2d(2048, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
63 |
+
self.nb_y_layer = nn.Conv2d(2048, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
64 |
+
|
65 |
+
nn.init.normal_(self.cls_layer.weight, std=0.001)
|
66 |
+
if self.cls_layer.bias is not None:
|
67 |
+
nn.init.constant_(self.cls_layer.bias, 0)
|
68 |
+
|
69 |
+
nn.init.normal_(self.x_layer.weight, std=0.001)
|
70 |
+
if self.x_layer.bias is not None:
|
71 |
+
nn.init.constant_(self.x_layer.bias, 0)
|
72 |
+
|
73 |
+
nn.init.normal_(self.y_layer.weight, std=0.001)
|
74 |
+
if self.y_layer.bias is not None:
|
75 |
+
nn.init.constant_(self.y_layer.bias, 0)
|
76 |
+
|
77 |
+
nn.init.normal_(self.nb_x_layer.weight, std=0.001)
|
78 |
+
if self.nb_x_layer.bias is not None:
|
79 |
+
nn.init.constant_(self.nb_x_layer.bias, 0)
|
80 |
+
|
81 |
+
nn.init.normal_(self.nb_y_layer.weight, std=0.001)
|
82 |
+
if self.nb_y_layer.bias is not None:
|
83 |
+
nn.init.constant_(self.nb_y_layer.bias, 0)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
x = self.conv1(x)
|
87 |
+
x = self.bn1(x)
|
88 |
+
x = F.relu(x)
|
89 |
+
x = self.maxpool(x)
|
90 |
+
x = self.layer1(x)
|
91 |
+
x = self.layer2(x)
|
92 |
+
x = self.layer3(x)
|
93 |
+
x = self.layer4(x)
|
94 |
+
if self.net_stride == 128:
|
95 |
+
x = F.relu(self.bn5(self.layer5(x)))
|
96 |
+
x = F.relu(self.bn6(self.layer6(x)))
|
97 |
+
elif self.net_stride == 64:
|
98 |
+
x = F.relu(self.bn5(self.layer5(x)))
|
99 |
+
else:
|
100 |
+
pass
|
101 |
+
x1 = self.cls_layer(x)
|
102 |
+
x2 = self.x_layer(x)
|
103 |
+
x3 = self.y_layer(x)
|
104 |
+
x4 = self.nb_x_layer(x)
|
105 |
+
x5 = self.nb_y_layer(x)
|
106 |
+
return x1, x2, x3, x4, x5
|
107 |
+
|
108 |
+
# net_stride output_size
|
109 |
+
# 128 2x2
|
110 |
+
# 64 4x4
|
111 |
+
# 32 8x8
|
112 |
+
# pip regression, resnet50
|
113 |
+
class Pip_resnet50(nn.Module):
|
114 |
+
def __init__(self, resnet, num_nb, num_lms=68, input_size=256, net_stride=32):
|
115 |
+
super(Pip_resnet50, self).__init__()
|
116 |
+
self.num_nb = num_nb
|
117 |
+
self.num_lms = num_lms
|
118 |
+
self.input_size = input_size
|
119 |
+
self.net_stride = net_stride
|
120 |
+
self.conv1 = resnet.conv1
|
121 |
+
self.bn1 = resnet.bn1
|
122 |
+
self.maxpool = resnet.maxpool
|
123 |
+
self.sigmoid = nn.Sigmoid()
|
124 |
+
self.layer1 = resnet.layer1
|
125 |
+
self.layer2 = resnet.layer2
|
126 |
+
self.layer3 = resnet.layer3
|
127 |
+
self.layer4 = resnet.layer4
|
128 |
+
if self.net_stride == 128:
|
129 |
+
self.layer5 = nn.Conv2d(2048, 512, kernel_size=3, stride=2, padding=1)
|
130 |
+
self.bn5 = nn.BatchNorm2d(512)
|
131 |
+
self.layer6 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
|
132 |
+
self.bn6 = nn.BatchNorm2d(512)
|
133 |
+
# init
|
134 |
+
nn.init.normal_(self.layer5.weight, std=0.001)
|
135 |
+
if self.layer5.bias is not None:
|
136 |
+
nn.init.constant_(self.layer5.bias, 0)
|
137 |
+
nn.init.constant_(self.bn5.weight, 1)
|
138 |
+
nn.init.constant_(self.bn5.bias, 0)
|
139 |
+
|
140 |
+
nn.init.normal_(self.layer6.weight, std=0.001)
|
141 |
+
if self.layer6.bias is not None:
|
142 |
+
nn.init.constant_(self.layer6.bias, 0)
|
143 |
+
nn.init.constant_(self.bn6.weight, 1)
|
144 |
+
nn.init.constant_(self.bn6.bias, 0)
|
145 |
+
elif self.net_stride == 64:
|
146 |
+
self.layer5 = nn.Conv2d(2048, 512, kernel_size=3, stride=2, padding=1)
|
147 |
+
self.bn5 = nn.BatchNorm2d(512)
|
148 |
+
# init
|
149 |
+
nn.init.normal_(self.layer5.weight, std=0.001)
|
150 |
+
if self.layer5.bias is not None:
|
151 |
+
nn.init.constant_(self.layer5.bias, 0)
|
152 |
+
nn.init.constant_(self.bn5.weight, 1)
|
153 |
+
nn.init.constant_(self.bn5.bias, 0)
|
154 |
+
elif self.net_stride == 32:
|
155 |
+
pass
|
156 |
+
else:
|
157 |
+
print('No such net_stride!')
|
158 |
+
exit(0)
|
159 |
+
|
160 |
+
self.cls_layer = nn.Conv2d(2048, num_lms, kernel_size=1, stride=1, padding=0)
|
161 |
+
self.x_layer = nn.Conv2d(2048, num_lms, kernel_size=1, stride=1, padding=0)
|
162 |
+
self.y_layer = nn.Conv2d(2048, num_lms, kernel_size=1, stride=1, padding=0)
|
163 |
+
self.nb_x_layer = nn.Conv2d(2048, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
164 |
+
self.nb_y_layer = nn.Conv2d(2048, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
165 |
+
|
166 |
+
nn.init.normal_(self.cls_layer.weight, std=0.001)
|
167 |
+
if self.cls_layer.bias is not None:
|
168 |
+
nn.init.constant_(self.cls_layer.bias, 0)
|
169 |
+
|
170 |
+
nn.init.normal_(self.x_layer.weight, std=0.001)
|
171 |
+
if self.x_layer.bias is not None:
|
172 |
+
nn.init.constant_(self.x_layer.bias, 0)
|
173 |
+
|
174 |
+
nn.init.normal_(self.y_layer.weight, std=0.001)
|
175 |
+
if self.y_layer.bias is not None:
|
176 |
+
nn.init.constant_(self.y_layer.bias, 0)
|
177 |
+
|
178 |
+
nn.init.normal_(self.nb_x_layer.weight, std=0.001)
|
179 |
+
if self.nb_x_layer.bias is not None:
|
180 |
+
nn.init.constant_(self.nb_x_layer.bias, 0)
|
181 |
+
|
182 |
+
nn.init.normal_(self.nb_y_layer.weight, std=0.001)
|
183 |
+
if self.nb_y_layer.bias is not None:
|
184 |
+
nn.init.constant_(self.nb_y_layer.bias, 0)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
x = self.conv1(x)
|
188 |
+
x = self.bn1(x)
|
189 |
+
x = F.relu(x)
|
190 |
+
x = self.maxpool(x)
|
191 |
+
x = self.layer1(x)
|
192 |
+
x = self.layer2(x)
|
193 |
+
x = self.layer3(x)
|
194 |
+
x = self.layer4(x)
|
195 |
+
if self.net_stride == 128:
|
196 |
+
x = F.relu(self.bn5(self.layer5(x)))
|
197 |
+
x = F.relu(self.bn6(self.layer6(x)))
|
198 |
+
elif self.net_stride == 64:
|
199 |
+
x = F.relu(self.bn5(self.layer5(x)))
|
200 |
+
else:
|
201 |
+
pass
|
202 |
+
x1 = self.cls_layer(x)
|
203 |
+
x2 = self.x_layer(x)
|
204 |
+
x3 = self.y_layer(x)
|
205 |
+
x4 = self.nb_x_layer(x)
|
206 |
+
x5 = self.nb_y_layer(x)
|
207 |
+
return x1, x2, x3, x4, x5
|
208 |
+
|
209 |
+
# net_stride output_size
|
210 |
+
# 128 2x2
|
211 |
+
# 64 4x4
|
212 |
+
# 32 8x8
|
213 |
+
# pip regression, resnet18
|
214 |
+
class Pip_resnet18(nn.Module):
|
215 |
+
def __init__(self, resnet, num_nb, num_lms=68, input_size=256, net_stride=32):
|
216 |
+
super(Pip_resnet18, self).__init__()
|
217 |
+
self.num_nb = num_nb
|
218 |
+
self.num_lms = num_lms
|
219 |
+
self.input_size = input_size
|
220 |
+
self.net_stride = net_stride
|
221 |
+
self.conv1 = resnet.conv1
|
222 |
+
self.bn1 = resnet.bn1
|
223 |
+
self.maxpool = resnet.maxpool
|
224 |
+
self.sigmoid = nn.Sigmoid()
|
225 |
+
self.layer1 = resnet.layer1
|
226 |
+
self.layer2 = resnet.layer2
|
227 |
+
self.layer3 = resnet.layer3
|
228 |
+
self.layer4 = resnet.layer4
|
229 |
+
if self.net_stride == 128:
|
230 |
+
self.layer5 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
|
231 |
+
self.bn5 = nn.BatchNorm2d(512)
|
232 |
+
self.layer6 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
|
233 |
+
self.bn6 = nn.BatchNorm2d(512)
|
234 |
+
# init
|
235 |
+
nn.init.normal_(self.layer5.weight, std=0.001)
|
236 |
+
if self.layer5.bias is not None:
|
237 |
+
nn.init.constant_(self.layer5.bias, 0)
|
238 |
+
nn.init.constant_(self.bn5.weight, 1)
|
239 |
+
nn.init.constant_(self.bn5.bias, 0)
|
240 |
+
|
241 |
+
nn.init.normal_(self.layer6.weight, std=0.001)
|
242 |
+
if self.layer6.bias is not None:
|
243 |
+
nn.init.constant_(self.layer6.bias, 0)
|
244 |
+
nn.init.constant_(self.bn6.weight, 1)
|
245 |
+
nn.init.constant_(self.bn6.bias, 0)
|
246 |
+
elif self.net_stride == 64:
|
247 |
+
self.layer5 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
|
248 |
+
self.bn5 = nn.BatchNorm2d(512)
|
249 |
+
# init
|
250 |
+
nn.init.normal_(self.layer5.weight, std=0.001)
|
251 |
+
if self.layer5.bias is not None:
|
252 |
+
nn.init.constant_(self.layer5.bias, 0)
|
253 |
+
nn.init.constant_(self.bn5.weight, 1)
|
254 |
+
nn.init.constant_(self.bn5.bias, 0)
|
255 |
+
elif self.net_stride == 32:
|
256 |
+
pass
|
257 |
+
elif self.net_stride == 16:
|
258 |
+
self.deconv1 = nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1, bias=False)
|
259 |
+
self.bn_deconv1 = nn.BatchNorm2d(512)
|
260 |
+
nn.init.normal_(self.deconv1.weight, std=0.001)
|
261 |
+
if self.deconv1.bias is not None:
|
262 |
+
nn.init.constant_(self.deconv1.bias, 0)
|
263 |
+
nn.init.constant_(self.bn_deconv1.weight, 1)
|
264 |
+
nn.init.constant_(self.bn_deconv1.bias, 0)
|
265 |
+
else:
|
266 |
+
print('No such net_stride!')
|
267 |
+
exit(0)
|
268 |
+
|
269 |
+
self.cls_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0)
|
270 |
+
self.x_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0)
|
271 |
+
self.y_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0)
|
272 |
+
self.nb_x_layer = nn.Conv2d(512, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
273 |
+
self.nb_y_layer = nn.Conv2d(512, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
274 |
+
|
275 |
+
nn.init.normal_(self.cls_layer.weight, std=0.001)
|
276 |
+
if self.cls_layer.bias is not None:
|
277 |
+
nn.init.constant_(self.cls_layer.bias, 0)
|
278 |
+
|
279 |
+
nn.init.normal_(self.x_layer.weight, std=0.001)
|
280 |
+
if self.x_layer.bias is not None:
|
281 |
+
nn.init.constant_(self.x_layer.bias, 0)
|
282 |
+
|
283 |
+
nn.init.normal_(self.y_layer.weight, std=0.001)
|
284 |
+
if self.y_layer.bias is not None:
|
285 |
+
nn.init.constant_(self.y_layer.bias, 0)
|
286 |
+
|
287 |
+
nn.init.normal_(self.nb_x_layer.weight, std=0.001)
|
288 |
+
if self.nb_x_layer.bias is not None:
|
289 |
+
nn.init.constant_(self.nb_x_layer.bias, 0)
|
290 |
+
|
291 |
+
nn.init.normal_(self.nb_y_layer.weight, std=0.001)
|
292 |
+
if self.nb_y_layer.bias is not None:
|
293 |
+
nn.init.constant_(self.nb_y_layer.bias, 0)
|
294 |
+
|
295 |
+
def forward(self, x):
|
296 |
+
x = self.conv1(x)
|
297 |
+
x = self.bn1(x)
|
298 |
+
x = F.relu(x)
|
299 |
+
x = self.maxpool(x)
|
300 |
+
x = self.layer1(x)
|
301 |
+
x = self.layer2(x)
|
302 |
+
x = self.layer3(x)
|
303 |
+
x = self.layer4(x)
|
304 |
+
if self.net_stride == 128:
|
305 |
+
x = F.relu(self.bn5(self.layer5(x)))
|
306 |
+
x = F.relu(self.bn6(self.layer6(x)))
|
307 |
+
elif self.net_stride == 64:
|
308 |
+
x = F.relu(self.bn5(self.layer5(x)))
|
309 |
+
elif self.net_stride == 16:
|
310 |
+
x = F.relu(self.bn_deconv1(self.deconv1(x)))
|
311 |
+
else:
|
312 |
+
pass
|
313 |
+
x1 = self.cls_layer(x)
|
314 |
+
x2 = self.x_layer(x)
|
315 |
+
x3 = self.y_layer(x)
|
316 |
+
x4 = self.nb_x_layer(x)
|
317 |
+
x5 = self.nb_y_layer(x)
|
318 |
+
return x1, x2, x3, x4, x5
|
319 |
+
|
320 |
+
class Pip_mbnetv2(nn.Module):
|
321 |
+
def __init__(self, mbnet, num_nb, num_lms=68, input_size=256, net_stride=32):
|
322 |
+
super(Pip_mbnetv2, self).__init__()
|
323 |
+
self.num_nb = num_nb
|
324 |
+
self.num_lms = num_lms
|
325 |
+
self.input_size = input_size
|
326 |
+
self.net_stride = net_stride
|
327 |
+
self.features = mbnet.features
|
328 |
+
self.sigmoid = nn.Sigmoid()
|
329 |
+
|
330 |
+
self.cls_layer = nn.Conv2d(1280, num_lms, kernel_size=1, stride=1, padding=0)
|
331 |
+
self.x_layer = nn.Conv2d(1280, num_lms, kernel_size=1, stride=1, padding=0)
|
332 |
+
self.y_layer = nn.Conv2d(1280, num_lms, kernel_size=1, stride=1, padding=0)
|
333 |
+
self.nb_x_layer = nn.Conv2d(1280, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
334 |
+
self.nb_y_layer = nn.Conv2d(1280, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
335 |
+
|
336 |
+
nn.init.normal_(self.cls_layer.weight, std=0.001)
|
337 |
+
if self.cls_layer.bias is not None:
|
338 |
+
nn.init.constant_(self.cls_layer.bias, 0)
|
339 |
+
|
340 |
+
nn.init.normal_(self.x_layer.weight, std=0.001)
|
341 |
+
if self.x_layer.bias is not None:
|
342 |
+
nn.init.constant_(self.x_layer.bias, 0)
|
343 |
+
|
344 |
+
nn.init.normal_(self.y_layer.weight, std=0.001)
|
345 |
+
if self.y_layer.bias is not None:
|
346 |
+
nn.init.constant_(self.y_layer.bias, 0)
|
347 |
+
|
348 |
+
nn.init.normal_(self.nb_x_layer.weight, std=0.001)
|
349 |
+
if self.nb_x_layer.bias is not None:
|
350 |
+
nn.init.constant_(self.nb_x_layer.bias, 0)
|
351 |
+
|
352 |
+
nn.init.normal_(self.nb_y_layer.weight, std=0.001)
|
353 |
+
if self.nb_y_layer.bias is not None:
|
354 |
+
nn.init.constant_(self.nb_y_layer.bias, 0)
|
355 |
+
|
356 |
+
def forward(self, x):
|
357 |
+
x = self.features(x)
|
358 |
+
x1 = self.cls_layer(x)
|
359 |
+
x2 = self.x_layer(x)
|
360 |
+
x3 = self.y_layer(x)
|
361 |
+
x4 = self.nb_x_layer(x)
|
362 |
+
x5 = self.nb_y_layer(x)
|
363 |
+
return x1, x2, x3, x4, x5
|
364 |
+
|
365 |
+
class Pip_mbnetv3(nn.Module):
|
366 |
+
def __init__(self, mbnet, num_nb, num_lms=68, input_size=256, net_stride=32):
|
367 |
+
super(Pip_mbnetv3, self).__init__()
|
368 |
+
self.num_nb = num_nb
|
369 |
+
self.num_lms = num_lms
|
370 |
+
self.input_size = input_size
|
371 |
+
self.net_stride = net_stride
|
372 |
+
self.features = mbnet.features
|
373 |
+
self.conv = mbnet.conv
|
374 |
+
self.sigmoid = nn.Sigmoid()
|
375 |
+
|
376 |
+
self.cls_layer = nn.Conv2d(960, num_lms, kernel_size=1, stride=1, padding=0)
|
377 |
+
self.x_layer = nn.Conv2d(960, num_lms, kernel_size=1, stride=1, padding=0)
|
378 |
+
self.y_layer = nn.Conv2d(960, num_lms, kernel_size=1, stride=1, padding=0)
|
379 |
+
self.nb_x_layer = nn.Conv2d(960, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
380 |
+
self.nb_y_layer = nn.Conv2d(960, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
381 |
+
|
382 |
+
nn.init.normal_(self.cls_layer.weight, std=0.001)
|
383 |
+
if self.cls_layer.bias is not None:
|
384 |
+
nn.init.constant_(self.cls_layer.bias, 0)
|
385 |
+
|
386 |
+
nn.init.normal_(self.x_layer.weight, std=0.001)
|
387 |
+
if self.x_layer.bias is not None:
|
388 |
+
nn.init.constant_(self.x_layer.bias, 0)
|
389 |
+
|
390 |
+
nn.init.normal_(self.y_layer.weight, std=0.001)
|
391 |
+
if self.y_layer.bias is not None:
|
392 |
+
nn.init.constant_(self.y_layer.bias, 0)
|
393 |
+
|
394 |
+
nn.init.normal_(self.nb_x_layer.weight, std=0.001)
|
395 |
+
if self.nb_x_layer.bias is not None:
|
396 |
+
nn.init.constant_(self.nb_x_layer.bias, 0)
|
397 |
+
|
398 |
+
nn.init.normal_(self.nb_y_layer.weight, std=0.001)
|
399 |
+
if self.nb_y_layer.bias is not None:
|
400 |
+
nn.init.constant_(self.nb_y_layer.bias, 0)
|
401 |
+
|
402 |
+
def forward(self, x):
|
403 |
+
x = self.features(x)
|
404 |
+
x = self.conv(x)
|
405 |
+
x1 = self.cls_layer(x)
|
406 |
+
x2 = self.x_layer(x)
|
407 |
+
x3 = self.y_layer(x)
|
408 |
+
x4 = self.nb_x_layer(x)
|
409 |
+
x5 = self.nb_y_layer(x)
|
410 |
+
return x1, x2, x3, x4, x5
|
411 |
+
|
412 |
+
|
413 |
+
if __name__ == '__main__':
|
414 |
+
pass
|
415 |
+
|
third_party/PIPNet/lib/networks_gssl.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision.models as models
|
5 |
+
import numpy as np
|
6 |
+
import time
|
7 |
+
|
8 |
+
# net_stride output_size
|
9 |
+
# 128 2x2
|
10 |
+
# 64 4x4
|
11 |
+
# 32 8x8
|
12 |
+
# pip regression, resnet18, for GSSL
|
13 |
+
class Pip_resnet18(nn.Module):
|
14 |
+
def __init__(self, resnet, num_nb, num_lms=68, input_size=256, net_stride=32):
|
15 |
+
super(Pip_resnet18, self).__init__()
|
16 |
+
self.num_nb = num_nb
|
17 |
+
self.num_lms = num_lms
|
18 |
+
self.input_size = input_size
|
19 |
+
self.net_stride = net_stride
|
20 |
+
self.conv1 = resnet.conv1
|
21 |
+
self.bn1 = resnet.bn1
|
22 |
+
self.maxpool = resnet.maxpool
|
23 |
+
self.sigmoid = nn.Sigmoid()
|
24 |
+
self.layer1 = resnet.layer1
|
25 |
+
self.layer2 = resnet.layer2
|
26 |
+
self.layer3 = resnet.layer3
|
27 |
+
self.layer4 = resnet.layer4
|
28 |
+
|
29 |
+
self.my_maxpool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
30 |
+
|
31 |
+
self.cls_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0)
|
32 |
+
self.x_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0)
|
33 |
+
self.y_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0)
|
34 |
+
self.nb_x_layer = nn.Conv2d(512, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
35 |
+
self.nb_y_layer = nn.Conv2d(512, num_nb*num_lms, kernel_size=1, stride=1, padding=0)
|
36 |
+
|
37 |
+
# init
|
38 |
+
nn.init.normal_(self.cls_layer.weight, std=0.001)
|
39 |
+
if self.cls_layer.bias is not None:
|
40 |
+
nn.init.constant_(self.cls_layer.bias, 0)
|
41 |
+
|
42 |
+
nn.init.normal_(self.x_layer.weight, std=0.001)
|
43 |
+
if self.x_layer.bias is not None:
|
44 |
+
nn.init.constant_(self.x_layer.bias, 0)
|
45 |
+
|
46 |
+
nn.init.normal_(self.y_layer.weight, std=0.001)
|
47 |
+
if self.y_layer.bias is not None:
|
48 |
+
nn.init.constant_(self.y_layer.bias, 0)
|
49 |
+
|
50 |
+
nn.init.normal_(self.nb_x_layer.weight, std=0.001)
|
51 |
+
if self.nb_x_layer.bias is not None:
|
52 |
+
nn.init.constant_(self.nb_x_layer.bias, 0)
|
53 |
+
|
54 |
+
nn.init.normal_(self.nb_y_layer.weight, std=0.001)
|
55 |
+
if self.nb_y_layer.bias is not None:
|
56 |
+
nn.init.constant_(self.nb_y_layer.bias, 0)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.conv1(x)
|
60 |
+
x = self.bn1(x)
|
61 |
+
x = F.relu(x)
|
62 |
+
x = self.maxpool(x)
|
63 |
+
x = self.layer1(x)
|
64 |
+
x = self.layer2(x)
|
65 |
+
x = self.layer3(x)
|
66 |
+
x = self.layer4(x)
|
67 |
+
cls1 = self.cls_layer(x)
|
68 |
+
offset_x = self.x_layer(x)
|
69 |
+
offset_y = self.y_layer(x)
|
70 |
+
nb_x = self.nb_x_layer(x)
|
71 |
+
nb_y = self.nb_y_layer(x)
|
72 |
+
x = self.my_maxpool(x)
|
73 |
+
cls2 = self.cls_layer(x)
|
74 |
+
x = self.my_maxpool(x)
|
75 |
+
cls3 = self.cls_layer(x)
|
76 |
+
return cls1, cls2, cls3, offset_x, offset_y, nb_x, nb_y
|
77 |
+
|
78 |
+
if __name__ == '__main__':
|
79 |
+
pass
|
80 |
+
|
third_party/PIPNet/lib/preprocess.py
ADDED
@@ -0,0 +1,554 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, cv2
|
2 |
+
import hdf5storage
|
3 |
+
import numpy as np
|
4 |
+
import sys
|
5 |
+
|
6 |
+
def process_300w(root_folder, folder_name, image_name, label_name, target_size):
|
7 |
+
image_path = os.path.join(root_folder, folder_name, image_name)
|
8 |
+
label_path = os.path.join(root_folder, folder_name, label_name)
|
9 |
+
|
10 |
+
with open(label_path, 'r') as ff:
|
11 |
+
anno = ff.readlines()[3:-1]
|
12 |
+
anno = [x.strip().split() for x in anno]
|
13 |
+
anno = [[int(float(x[0])), int(float(x[1]))] for x in anno]
|
14 |
+
image = cv2.imread(image_path)
|
15 |
+
image_height, image_width, _ = image.shape
|
16 |
+
anno_x = [x[0] for x in anno]
|
17 |
+
anno_y = [x[1] for x in anno]
|
18 |
+
bbox_xmin = min(anno_x)
|
19 |
+
bbox_ymin = min(anno_y)
|
20 |
+
bbox_xmax = max(anno_x)
|
21 |
+
bbox_ymax = max(anno_y)
|
22 |
+
bbox_width = bbox_xmax - bbox_xmin
|
23 |
+
bbox_height = bbox_ymax - bbox_ymin
|
24 |
+
scale = 1.1
|
25 |
+
bbox_xmin -= int((scale-1)/2*bbox_width)
|
26 |
+
bbox_ymin -= int((scale-1)/2*bbox_height)
|
27 |
+
bbox_width *= scale
|
28 |
+
bbox_height *= scale
|
29 |
+
bbox_width = int(bbox_width)
|
30 |
+
bbox_height = int(bbox_height)
|
31 |
+
bbox_xmin = max(bbox_xmin, 0)
|
32 |
+
bbox_ymin = max(bbox_ymin, 0)
|
33 |
+
bbox_width = min(bbox_width, image_width-bbox_xmin-1)
|
34 |
+
bbox_height = min(bbox_height, image_height-bbox_ymin-1)
|
35 |
+
anno = [[(x-bbox_xmin)/bbox_width, (y-bbox_ymin)/bbox_height] for x,y in anno]
|
36 |
+
|
37 |
+
bbox_xmax = bbox_xmin + bbox_width
|
38 |
+
bbox_ymax = bbox_ymin + bbox_height
|
39 |
+
image_crop = image[bbox_ymin:bbox_ymax, bbox_xmin:bbox_xmax, :]
|
40 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
41 |
+
return image_crop, anno
|
42 |
+
|
43 |
+
def process_cofw(image, bbox, anno, target_size):
|
44 |
+
image_height, image_width, _ = image.shape
|
45 |
+
anno_x = anno[:29]
|
46 |
+
anno_y = anno[29:58]
|
47 |
+
################################
|
48 |
+
xmin, ymin, width, height = bbox
|
49 |
+
xmax = xmin + width -1
|
50 |
+
ymax = ymin + height -1
|
51 |
+
################################
|
52 |
+
xmin = max(xmin, 0)
|
53 |
+
ymin = max(ymin, 0)
|
54 |
+
xmax = min(xmax, image_width-1)
|
55 |
+
ymax = min(ymax, image_height-1)
|
56 |
+
anno_x = (anno_x - xmin) / (xmax - xmin)
|
57 |
+
anno_y = (anno_y - ymin) / (ymax - ymin)
|
58 |
+
anno = np.concatenate([anno_x.reshape(-1,1), anno_y.reshape(-1,1)], axis=1)
|
59 |
+
anno = list(anno)
|
60 |
+
anno = [list(x) for x in anno]
|
61 |
+
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :]
|
62 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
63 |
+
return image_crop, anno
|
64 |
+
|
65 |
+
def process_wflw(anno, target_size):
|
66 |
+
image_name = anno[-1]
|
67 |
+
image_path = os.path.join('..', 'data', 'WFLW', 'WFLW_images', image_name)
|
68 |
+
image = cv2.imread(image_path)
|
69 |
+
image_height, image_width, _ = image.shape
|
70 |
+
lms = anno[:196]
|
71 |
+
lms = [float(x) for x in lms]
|
72 |
+
lms_x = lms[0::2]
|
73 |
+
lms_y = lms[1::2]
|
74 |
+
lms_x = [x if x >=0 else 0 for x in lms_x]
|
75 |
+
lms_x = [x if x <=image_width else image_width for x in lms_x]
|
76 |
+
lms_y = [y if y >=0 else 0 for y in lms_y]
|
77 |
+
lms_y = [y if y <=image_height else image_height for y in lms_y]
|
78 |
+
lms = [[x,y] for x,y in zip(lms_x, lms_y)]
|
79 |
+
lms = [x for z in lms for x in z]
|
80 |
+
bbox = anno[196:200]
|
81 |
+
bbox = [float(x) for x in bbox]
|
82 |
+
attrs = anno[200:206]
|
83 |
+
attrs = np.array([int(x) for x in attrs])
|
84 |
+
bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax = bbox
|
85 |
+
|
86 |
+
width = bbox_xmax - bbox_xmin
|
87 |
+
height = bbox_ymax - bbox_ymin
|
88 |
+
scale = 1.2
|
89 |
+
bbox_xmin -= width * (scale-1)/2
|
90 |
+
bbox_ymin -= height * (scale-1)/2
|
91 |
+
bbox_xmax += width * (scale-1)/2
|
92 |
+
bbox_ymax += height * (scale-1)/2
|
93 |
+
bbox_xmin = max(bbox_xmin, 0)
|
94 |
+
bbox_ymin = max(bbox_ymin, 0)
|
95 |
+
bbox_xmax = min(bbox_xmax, image_width-1)
|
96 |
+
bbox_ymax = min(bbox_ymax, image_height-1)
|
97 |
+
width = bbox_xmax - bbox_xmin
|
98 |
+
height = bbox_ymax - bbox_ymin
|
99 |
+
image_crop = image[int(bbox_ymin):int(bbox_ymax), int(bbox_xmin):int(bbox_xmax), :]
|
100 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
101 |
+
|
102 |
+
tmp1 = [bbox_xmin, bbox_ymin]*98
|
103 |
+
tmp1 = np.array(tmp1)
|
104 |
+
tmp2 = [width, height]*98
|
105 |
+
tmp2 = np.array(tmp2)
|
106 |
+
lms = np.array(lms) - tmp1
|
107 |
+
lms = lms / tmp2
|
108 |
+
lms = lms.tolist()
|
109 |
+
lms = zip(lms[0::2], lms[1::2])
|
110 |
+
return image_crop, list(lms)
|
111 |
+
|
112 |
+
def process_aflw(root_folder, image_name, bbox, anno, target_size):
|
113 |
+
image = cv2.imread(os.path.join(root_folder, 'AFLW', 'flickr', image_name))
|
114 |
+
image_height, image_width, _ = image.shape
|
115 |
+
anno_x = anno[:19]
|
116 |
+
anno_y = anno[19:]
|
117 |
+
anno_x = [x if x >=0 else 0 for x in anno_x]
|
118 |
+
anno_x = [x if x <=image_width else image_width for x in anno_x]
|
119 |
+
anno_y = [y if y >=0 else 0 for y in anno_y]
|
120 |
+
anno_y = [y if y <=image_height else image_height for y in anno_y]
|
121 |
+
anno_x_min = min(anno_x)
|
122 |
+
anno_x_max = max(anno_x)
|
123 |
+
anno_y_min = min(anno_y)
|
124 |
+
anno_y_max = max(anno_y)
|
125 |
+
xmin, xmax, ymin, ymax = bbox
|
126 |
+
|
127 |
+
xmin = max(xmin, 0)
|
128 |
+
ymin = max(ymin, 0)
|
129 |
+
xmax = min(xmax, image_width-1)
|
130 |
+
ymax = min(ymax, image_height-1)
|
131 |
+
|
132 |
+
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :]
|
133 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
134 |
+
|
135 |
+
anno_x = (np.array(anno_x) - xmin) / (xmax - xmin)
|
136 |
+
anno_y = (np.array(anno_y) - ymin) / (ymax - ymin)
|
137 |
+
|
138 |
+
anno = np.concatenate([anno_x.reshape(-1,1), anno_y.reshape(-1,1)], axis=1).flatten()
|
139 |
+
anno = zip(anno[0::2], anno[1::2])
|
140 |
+
return image_crop, anno
|
141 |
+
|
142 |
+
def gen_meanface(root_folder, data_name):
|
143 |
+
with open(os.path.join(root_folder, data_name, 'train.txt'), 'r') as f:
|
144 |
+
annos = f.readlines()
|
145 |
+
annos = [x.strip().split()[1:] for x in annos]
|
146 |
+
annos = [[float(x) for x in anno] for anno in annos]
|
147 |
+
annos = np.array(annos)
|
148 |
+
meanface = np.mean(annos, axis=0)
|
149 |
+
meanface = meanface.tolist()
|
150 |
+
meanface = [str(x) for x in meanface]
|
151 |
+
|
152 |
+
with open(os.path.join(root_folder, data_name, 'meanface.txt'), 'w') as f:
|
153 |
+
f.write(' '.join(meanface))
|
154 |
+
|
155 |
+
def convert_wflw(root_folder, data_name):
|
156 |
+
with open(os.path.join('../data/WFLW/test.txt'), 'r') as f:
|
157 |
+
annos = f.readlines()
|
158 |
+
annos = [x.strip().split() for x in annos]
|
159 |
+
annos_new = []
|
160 |
+
for anno in annos:
|
161 |
+
annos_new.append([])
|
162 |
+
# name
|
163 |
+
annos_new[-1].append(anno[0])
|
164 |
+
anno = anno[1:]
|
165 |
+
# jaw
|
166 |
+
for i in range(17):
|
167 |
+
annos_new[-1].append(anno[i*2*2])
|
168 |
+
annos_new[-1].append(anno[i*2*2+1])
|
169 |
+
# left eyebrow
|
170 |
+
annos_new[-1].append(anno[33*2])
|
171 |
+
annos_new[-1].append(anno[33*2+1])
|
172 |
+
annos_new[-1].append(anno[34*2])
|
173 |
+
annos_new[-1].append(str((float(anno[34*2+1])+float(anno[41*2+1]))/2))
|
174 |
+
annos_new[-1].append(anno[35*2])
|
175 |
+
annos_new[-1].append(str((float(anno[35*2+1])+float(anno[40*2+1]))/2))
|
176 |
+
annos_new[-1].append(anno[36*2])
|
177 |
+
annos_new[-1].append(str((float(anno[36*2+1])+float(anno[39*2+1]))/2))
|
178 |
+
annos_new[-1].append(anno[37*2])
|
179 |
+
annos_new[-1].append(str((float(anno[37*2+1])+float(anno[38*2+1]))/2))
|
180 |
+
# right eyebrow
|
181 |
+
annos_new[-1].append(anno[42*2])
|
182 |
+
annos_new[-1].append(str((float(anno[42*2+1])+float(anno[50*2+1]))/2))
|
183 |
+
annos_new[-1].append(anno[43*2])
|
184 |
+
annos_new[-1].append(str((float(anno[43*2+1])+float(anno[49*2+1]))/2))
|
185 |
+
annos_new[-1].append(anno[44*2])
|
186 |
+
annos_new[-1].append(str((float(anno[44*2+1])+float(anno[48*2+1]))/2))
|
187 |
+
annos_new[-1].append(anno[45*2])
|
188 |
+
annos_new[-1].append(str((float(anno[45*2+1])+float(anno[47*2+1]))/2))
|
189 |
+
annos_new[-1].append(anno[46*2])
|
190 |
+
annos_new[-1].append(anno[46*2+1])
|
191 |
+
# nose
|
192 |
+
for i in range(51, 60):
|
193 |
+
annos_new[-1].append(anno[i*2])
|
194 |
+
annos_new[-1].append(anno[i*2+1])
|
195 |
+
# left eye
|
196 |
+
annos_new[-1].append(anno[60*2])
|
197 |
+
annos_new[-1].append(anno[60*2+1])
|
198 |
+
annos_new[-1].append(str(0.666*float(anno[61*2])+0.333*float(anno[62*2])))
|
199 |
+
annos_new[-1].append(str(0.666*float(anno[61*2+1])+0.333*float(anno[62*2+1])))
|
200 |
+
annos_new[-1].append(str(0.666*float(anno[63*2])+0.333*float(anno[62*2])))
|
201 |
+
annos_new[-1].append(str(0.666*float(anno[63*2+1])+0.333*float(anno[62*2+1])))
|
202 |
+
annos_new[-1].append(anno[64*2])
|
203 |
+
annos_new[-1].append(anno[64*2+1])
|
204 |
+
annos_new[-1].append(str(0.666*float(anno[65*2])+0.333*float(anno[66*2])))
|
205 |
+
annos_new[-1].append(str(0.666*float(anno[65*2+1])+0.333*float(anno[66*2+1])))
|
206 |
+
annos_new[-1].append(str(0.666*float(anno[67*2])+0.333*float(anno[66*2])))
|
207 |
+
annos_new[-1].append(str(0.666*float(anno[67*2+1])+0.333*float(anno[66*2+1])))
|
208 |
+
# right eye
|
209 |
+
annos_new[-1].append(anno[68*2])
|
210 |
+
annos_new[-1].append(anno[68*2+1])
|
211 |
+
annos_new[-1].append(str(0.666*float(anno[69*2])+0.333*float(anno[70*2])))
|
212 |
+
annos_new[-1].append(str(0.666*float(anno[69*2+1])+0.333*float(anno[70*2+1])))
|
213 |
+
annos_new[-1].append(str(0.666*float(anno[71*2])+0.333*float(anno[70*2])))
|
214 |
+
annos_new[-1].append(str(0.666*float(anno[71*2+1])+0.333*float(anno[70*2+1])))
|
215 |
+
annos_new[-1].append(anno[72*2])
|
216 |
+
annos_new[-1].append(anno[72*2+1])
|
217 |
+
annos_new[-1].append(str(0.666*float(anno[73*2])+0.333*float(anno[74*2])))
|
218 |
+
annos_new[-1].append(str(0.666*float(anno[73*2+1])+0.333*float(anno[74*2+1])))
|
219 |
+
annos_new[-1].append(str(0.666*float(anno[75*2])+0.333*float(anno[74*2])))
|
220 |
+
annos_new[-1].append(str(0.666*float(anno[75*2+1])+0.333*float(anno[74*2+1])))
|
221 |
+
# mouth
|
222 |
+
for i in range(76, 96):
|
223 |
+
annos_new[-1].append(anno[i*2])
|
224 |
+
annos_new[-1].append(anno[i*2+1])
|
225 |
+
|
226 |
+
with open(os.path.join(root_folder, data_name, 'test.txt'), 'w') as f:
|
227 |
+
for anno in annos_new:
|
228 |
+
f.write(' '.join(anno)+'\n')
|
229 |
+
|
230 |
+
|
231 |
+
def gen_data(root_folder, data_name, target_size):
|
232 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_train')):
|
233 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_train'))
|
234 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test')):
|
235 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test'))
|
236 |
+
|
237 |
+
################################################################################################################
|
238 |
+
if data_name == 'data_300W':
|
239 |
+
folders_train = ['afw', 'helen/trainset', 'lfpw/trainset']
|
240 |
+
annos_train = {}
|
241 |
+
for folder_train in folders_train:
|
242 |
+
all_files = sorted(os.listdir(os.path.join(root_folder, data_name, folder_train)))
|
243 |
+
image_files = [x for x in all_files if '.pts' not in x]
|
244 |
+
label_files = [x for x in all_files if '.pts' in x]
|
245 |
+
assert len(image_files) == len(label_files)
|
246 |
+
for image_name, label_name in zip(image_files, label_files):
|
247 |
+
print(image_name)
|
248 |
+
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_train, image_name, label_name, target_size)
|
249 |
+
image_crop_name = folder_train.replace('/', '_')+'_'+image_name
|
250 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_train', image_crop_name), image_crop)
|
251 |
+
annos_train[image_crop_name] = anno
|
252 |
+
with open(os.path.join(root_folder, data_name, 'train.txt'), 'w') as f:
|
253 |
+
for image_crop_name, anno in annos_train.items():
|
254 |
+
f.write(image_crop_name+' ')
|
255 |
+
for x,y in anno:
|
256 |
+
f.write(str(x)+' '+str(y)+' ')
|
257 |
+
f.write('\n')
|
258 |
+
|
259 |
+
|
260 |
+
folders_test = ['helen/testset', 'lfpw/testset', 'ibug']
|
261 |
+
annos_test = {}
|
262 |
+
for folder_test in folders_test:
|
263 |
+
all_files = sorted(os.listdir(os.path.join(root_folder, data_name, folder_test)))
|
264 |
+
image_files = [x for x in all_files if '.pts' not in x]
|
265 |
+
label_files = [x for x in all_files if '.pts' in x]
|
266 |
+
assert len(image_files) == len(label_files)
|
267 |
+
for image_name, label_name in zip(image_files, label_files):
|
268 |
+
print(image_name)
|
269 |
+
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_test, image_name, label_name, target_size)
|
270 |
+
image_crop_name = folder_test.replace('/', '_')+'_'+image_name
|
271 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test', image_crop_name), image_crop)
|
272 |
+
annos_test[image_crop_name] = anno
|
273 |
+
with open(os.path.join(root_folder, data_name, 'test.txt'), 'w') as f:
|
274 |
+
for image_crop_name, anno in annos_test.items():
|
275 |
+
f.write(image_crop_name+' ')
|
276 |
+
for x,y in anno:
|
277 |
+
f.write(str(x)+' '+str(y)+' ')
|
278 |
+
f.write('\n')
|
279 |
+
|
280 |
+
annos = None
|
281 |
+
with open(os.path.join(root_folder, data_name, 'test.txt'), 'r') as f:
|
282 |
+
annos = f.readlines()
|
283 |
+
with open(os.path.join(root_folder, data_name, 'test_common.txt'), 'w') as f:
|
284 |
+
for anno in annos:
|
285 |
+
if not 'ibug' in anno:
|
286 |
+
f.write(anno)
|
287 |
+
with open(os.path.join(root_folder, data_name, 'test_challenge.txt'), 'w') as f:
|
288 |
+
for anno in annos:
|
289 |
+
if 'ibug' in anno:
|
290 |
+
f.write(anno)
|
291 |
+
|
292 |
+
gen_meanface(root_folder, data_name)
|
293 |
+
################################################################################################################
|
294 |
+
elif data_name == 'COFW':
|
295 |
+
train_file = 'COFW_train_color.mat'
|
296 |
+
train_mat = hdf5storage.loadmat(os.path.join(root_folder, 'COFW', train_file))
|
297 |
+
images = train_mat['IsTr']
|
298 |
+
bboxes = train_mat['bboxesTr']
|
299 |
+
annos = train_mat['phisTr']
|
300 |
+
|
301 |
+
count = 1
|
302 |
+
with open(os.path.join(root_folder, 'COFW', 'train.txt'), 'w') as f:
|
303 |
+
for i in range(images.shape[0]):
|
304 |
+
image = images[i, 0]
|
305 |
+
# grayscale
|
306 |
+
if len(image.shape) == 2:
|
307 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
308 |
+
# swap rgb channel to bgr
|
309 |
+
else:
|
310 |
+
image = image[:,:,::-1]
|
311 |
+
bbox = bboxes[i, :]
|
312 |
+
anno = annos[i, :]
|
313 |
+
image_crop, anno = process_cofw(image, bbox, anno, target_size)
|
314 |
+
pad_num = 4-len(str(count))
|
315 |
+
image_crop_name = 'cofw_train_' + '0' * pad_num + str(count) + '.jpg'
|
316 |
+
print(image_crop_name)
|
317 |
+
cv2.imwrite(os.path.join(root_folder, 'COFW', 'images_train', image_crop_name), image_crop)
|
318 |
+
f.write(image_crop_name+' ')
|
319 |
+
for x,y in anno:
|
320 |
+
f.write(str(x)+' '+str(y)+' ')
|
321 |
+
f.write('\n')
|
322 |
+
count += 1
|
323 |
+
|
324 |
+
test_file = 'COFW_test_color.mat'
|
325 |
+
test_mat = hdf5storage.loadmat(os.path.join(root_folder, 'COFW', test_file))
|
326 |
+
images = test_mat['IsT']
|
327 |
+
bboxes = test_mat['bboxesT']
|
328 |
+
annos = test_mat['phisT']
|
329 |
+
|
330 |
+
count = 1
|
331 |
+
with open(os.path.join(root_folder, 'COFW', 'test.txt'), 'w') as f:
|
332 |
+
for i in range(images.shape[0]):
|
333 |
+
image = images[i, 0]
|
334 |
+
# grayscale
|
335 |
+
if len(image.shape) == 2:
|
336 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
337 |
+
# swap rgb channel to bgr
|
338 |
+
else:
|
339 |
+
image = image[:,:,::-1]
|
340 |
+
bbox = bboxes[i, :]
|
341 |
+
anno = annos[i, :]
|
342 |
+
image_crop, anno = process_cofw(image, bbox, anno, target_size)
|
343 |
+
pad_num = 4-len(str(count))
|
344 |
+
image_crop_name = 'cofw_test_' + '0' * pad_num + str(count) + '.jpg'
|
345 |
+
print(image_crop_name)
|
346 |
+
cv2.imwrite(os.path.join(root_folder, 'COFW', 'images_test', image_crop_name), image_crop)
|
347 |
+
f.write(image_crop_name+' ')
|
348 |
+
for x,y in anno:
|
349 |
+
f.write(str(x)+' '+str(y)+' ')
|
350 |
+
f.write('\n')
|
351 |
+
count += 1
|
352 |
+
gen_meanface(root_folder, data_name)
|
353 |
+
################################################################################################################
|
354 |
+
elif data_name == 'WFLW':
|
355 |
+
train_file = 'list_98pt_rect_attr_train.txt'
|
356 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', train_file), 'r') as f:
|
357 |
+
annos_train = f.readlines()
|
358 |
+
annos_train = [x.strip().split() for x in annos_train]
|
359 |
+
count = 1
|
360 |
+
with open(os.path.join(root_folder, 'WFLW', 'train.txt'), 'w') as f:
|
361 |
+
for anno_train in annos_train:
|
362 |
+
image_crop, anno = process_wflw(anno_train, target_size)
|
363 |
+
pad_num = 4-len(str(count))
|
364 |
+
image_crop_name = 'wflw_train_' + '0' * pad_num + str(count) + '.jpg'
|
365 |
+
print(image_crop_name)
|
366 |
+
cv2.imwrite(os.path.join(root_folder, 'WFLW', 'images_train', image_crop_name), image_crop)
|
367 |
+
f.write(image_crop_name+' ')
|
368 |
+
for x,y in anno:
|
369 |
+
f.write(str(x)+' '+str(y)+' ')
|
370 |
+
f.write('\n')
|
371 |
+
count += 1
|
372 |
+
|
373 |
+
test_file = 'list_98pt_rect_attr_test.txt'
|
374 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', test_file), 'r') as f:
|
375 |
+
annos_test = f.readlines()
|
376 |
+
annos_test = [x.strip().split() for x in annos_test]
|
377 |
+
names_mapping = {}
|
378 |
+
count = 1
|
379 |
+
with open(os.path.join(root_folder, 'WFLW', 'test.txt'), 'w') as f:
|
380 |
+
for anno_test in annos_test:
|
381 |
+
image_crop, anno = process_wflw(anno_test, target_size)
|
382 |
+
pad_num = 4-len(str(count))
|
383 |
+
image_crop_name = 'wflw_test_' + '0' * pad_num + str(count) + '.jpg'
|
384 |
+
print(image_crop_name)
|
385 |
+
names_mapping[anno_test[0]+'_'+anno_test[-1]] = [image_crop_name, anno]
|
386 |
+
cv2.imwrite(os.path.join(root_folder, 'WFLW', 'images_test', image_crop_name), image_crop)
|
387 |
+
f.write(image_crop_name+' ')
|
388 |
+
for x,y in list(anno):
|
389 |
+
f.write(str(x)+' '+str(y)+' ')
|
390 |
+
f.write('\n')
|
391 |
+
count += 1
|
392 |
+
|
393 |
+
test_pose_file = 'list_98pt_test_largepose.txt'
|
394 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_test', test_pose_file), 'r') as f:
|
395 |
+
annos_pose_test = f.readlines()
|
396 |
+
names_pose = [x.strip().split() for x in annos_pose_test]
|
397 |
+
names_pose = [x[0]+'_'+x[-1] for x in names_pose]
|
398 |
+
with open(os.path.join(root_folder, 'WFLW', 'test_pose.txt'), 'w') as f:
|
399 |
+
for name_pose in names_pose:
|
400 |
+
if name_pose in names_mapping:
|
401 |
+
image_crop_name, anno = names_mapping[name_pose]
|
402 |
+
f.write(image_crop_name+' ')
|
403 |
+
for x,y in anno:
|
404 |
+
f.write(str(x)+' '+str(y)+' ')
|
405 |
+
f.write('\n')
|
406 |
+
else:
|
407 |
+
print('error!')
|
408 |
+
exit(0)
|
409 |
+
|
410 |
+
test_expr_file = 'list_98pt_test_expression.txt'
|
411 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_test', test_expr_file), 'r') as f:
|
412 |
+
annos_expr_test = f.readlines()
|
413 |
+
names_expr = [x.strip().split() for x in annos_expr_test]
|
414 |
+
names_expr = [x[0]+'_'+x[-1] for x in names_expr]
|
415 |
+
with open(os.path.join(root_folder, 'WFLW', 'test_expr.txt'), 'w') as f:
|
416 |
+
for name_expr in names_expr:
|
417 |
+
if name_expr in names_mapping:
|
418 |
+
image_crop_name, anno = names_mapping[name_expr]
|
419 |
+
f.write(image_crop_name+' ')
|
420 |
+
for x,y in anno:
|
421 |
+
f.write(str(x)+' '+str(y)+' ')
|
422 |
+
f.write('\n')
|
423 |
+
else:
|
424 |
+
print('error!')
|
425 |
+
exit(0)
|
426 |
+
|
427 |
+
test_illu_file = 'list_98pt_test_illumination.txt'
|
428 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_test', test_illu_file), 'r') as f:
|
429 |
+
annos_illu_test = f.readlines()
|
430 |
+
names_illu = [x.strip().split() for x in annos_illu_test]
|
431 |
+
names_illu = [x[0]+'_'+x[-1] for x in names_illu]
|
432 |
+
with open(os.path.join(root_folder, 'WFLW', 'test_illu.txt'), 'w') as f:
|
433 |
+
for name_illu in names_illu:
|
434 |
+
if name_illu in names_mapping:
|
435 |
+
image_crop_name, anno = names_mapping[name_illu]
|
436 |
+
f.write(image_crop_name+' ')
|
437 |
+
for x,y in anno:
|
438 |
+
f.write(str(x)+' '+str(y)+' ')
|
439 |
+
f.write('\n')
|
440 |
+
else:
|
441 |
+
print('error!')
|
442 |
+
exit(0)
|
443 |
+
|
444 |
+
test_mu_file = 'list_98pt_test_makeup.txt'
|
445 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_test', test_mu_file), 'r') as f:
|
446 |
+
annos_mu_test = f.readlines()
|
447 |
+
names_mu = [x.strip().split() for x in annos_mu_test]
|
448 |
+
names_mu = [x[0]+'_'+x[-1] for x in names_mu]
|
449 |
+
with open(os.path.join(root_folder, 'WFLW', 'test_mu.txt'), 'w') as f:
|
450 |
+
for name_mu in names_mu:
|
451 |
+
if name_mu in names_mapping:
|
452 |
+
image_crop_name, anno = names_mapping[name_mu]
|
453 |
+
f.write(image_crop_name+' ')
|
454 |
+
for x,y in anno:
|
455 |
+
f.write(str(x)+' '+str(y)+' ')
|
456 |
+
f.write('\n')
|
457 |
+
else:
|
458 |
+
print('error!')
|
459 |
+
exit(0)
|
460 |
+
|
461 |
+
test_occu_file = 'list_98pt_test_occlusion.txt'
|
462 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_test', test_occu_file), 'r') as f:
|
463 |
+
annos_occu_test = f.readlines()
|
464 |
+
names_occu = [x.strip().split() for x in annos_occu_test]
|
465 |
+
names_occu = [x[0]+'_'+x[-1] for x in names_occu]
|
466 |
+
with open(os.path.join(root_folder, 'WFLW', 'test_occu.txt'), 'w') as f:
|
467 |
+
for name_occu in names_occu:
|
468 |
+
if name_occu in names_mapping:
|
469 |
+
image_crop_name, anno = names_mapping[name_occu]
|
470 |
+
f.write(image_crop_name+' ')
|
471 |
+
for x,y in anno:
|
472 |
+
f.write(str(x)+' '+str(y)+' ')
|
473 |
+
f.write('\n')
|
474 |
+
else:
|
475 |
+
print('error!')
|
476 |
+
exit(0)
|
477 |
+
|
478 |
+
|
479 |
+
test_blur_file = 'list_98pt_test_blur.txt'
|
480 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_test', test_blur_file), 'r') as f:
|
481 |
+
annos_blur_test = f.readlines()
|
482 |
+
names_blur = [x.strip().split() for x in annos_blur_test]
|
483 |
+
names_blur = [x[0]+'_'+x[-1] for x in names_blur]
|
484 |
+
with open(os.path.join(root_folder, 'WFLW', 'test_blur.txt'), 'w') as f:
|
485 |
+
for name_blur in names_blur:
|
486 |
+
if name_blur in names_mapping:
|
487 |
+
image_crop_name, anno = names_mapping[name_blur]
|
488 |
+
f.write(image_crop_name+' ')
|
489 |
+
for x,y in anno:
|
490 |
+
f.write(str(x)+' '+str(y)+' ')
|
491 |
+
f.write('\n')
|
492 |
+
else:
|
493 |
+
print('error!')
|
494 |
+
exit(0)
|
495 |
+
gen_meanface(root_folder, data_name)
|
496 |
+
################################################################################################################
|
497 |
+
elif data_name == 'AFLW':
|
498 |
+
mat = hdf5storage.loadmat('../data/AFLW/AFLWinfo_release.mat')
|
499 |
+
bboxes = mat['bbox']
|
500 |
+
annos = mat['data']
|
501 |
+
mask_new = mat['mask_new']
|
502 |
+
nameList = mat['nameList']
|
503 |
+
ra = mat['ra'][0]
|
504 |
+
train_indices = ra[:20000]
|
505 |
+
test_indices = ra[20000:]
|
506 |
+
|
507 |
+
with open(os.path.join(root_folder, 'AFLW', 'train.txt'), 'w') as f:
|
508 |
+
for index in train_indices:
|
509 |
+
# from matlab index
|
510 |
+
image_name = nameList[index-1][0][0]
|
511 |
+
bbox = bboxes[index-1]
|
512 |
+
anno = annos[index-1]
|
513 |
+
image_crop, anno = process_aflw(root_folder, image_name, bbox, anno, target_size)
|
514 |
+
pad_num = 5-len(str(index))
|
515 |
+
image_crop_name = 'aflw_train_' + '0' * pad_num + str(index) + '.jpg'
|
516 |
+
print(image_crop_name)
|
517 |
+
cv2.imwrite(os.path.join(root_folder, 'AFLW', 'images_train', image_crop_name), image_crop)
|
518 |
+
f.write(image_crop_name+' ')
|
519 |
+
for x,y in anno:
|
520 |
+
f.write(str(x)+' '+str(y)+' ')
|
521 |
+
f.write('\n')
|
522 |
+
|
523 |
+
with open(os.path.join(root_folder, 'AFLW', 'test.txt'), 'w') as f:
|
524 |
+
for index in test_indices:
|
525 |
+
# from matlab index
|
526 |
+
image_name = nameList[index-1][0][0]
|
527 |
+
bbox = bboxes[index-1]
|
528 |
+
anno = annos[index-1]
|
529 |
+
image_crop, anno = process_aflw(root_folder, image_name, bbox, anno, target_size)
|
530 |
+
pad_num = 5-len(str(index))
|
531 |
+
image_crop_name = 'aflw_test_' + '0' * pad_num + str(index) + '.jpg'
|
532 |
+
print(image_crop_name)
|
533 |
+
cv2.imwrite(os.path.join(root_folder, 'AFLW', 'images_test', image_crop_name), image_crop)
|
534 |
+
f.write(image_crop_name+' ')
|
535 |
+
for x,y in anno:
|
536 |
+
f.write(str(x)+' '+str(y)+' ')
|
537 |
+
f.write('\n')
|
538 |
+
gen_meanface(root_folder, data_name)
|
539 |
+
else:
|
540 |
+
print('Wrong data!')
|
541 |
+
|
542 |
+
if __name__ == '__main__':
|
543 |
+
if len(sys.argv) < 2:
|
544 |
+
print('please input the data name.')
|
545 |
+
print('1. data_300W')
|
546 |
+
print('2. COFW')
|
547 |
+
print('3. WFLW')
|
548 |
+
print('4. AFLW')
|
549 |
+
exit(0)
|
550 |
+
else:
|
551 |
+
data_name = sys.argv[1]
|
552 |
+
gen_data('../data', data_name, 256)
|
553 |
+
|
554 |
+
|
third_party/PIPNet/lib/preprocess_gssl.py
ADDED
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, cv2
|
2 |
+
import hdf5storage
|
3 |
+
import numpy as np
|
4 |
+
import sys
|
5 |
+
|
6 |
+
def process_300w(root_folder, folder_name, image_name, label_name, target_size):
|
7 |
+
image_path = os.path.join(root_folder, folder_name, image_name)
|
8 |
+
label_path = os.path.join(root_folder, folder_name, label_name)
|
9 |
+
|
10 |
+
with open(label_path, 'r') as ff:
|
11 |
+
anno = ff.readlines()[3:-1]
|
12 |
+
anno = [x.strip().split() for x in anno]
|
13 |
+
anno = [[int(float(x[0])), int(float(x[1]))] for x in anno]
|
14 |
+
image = cv2.imread(image_path)
|
15 |
+
image_height, image_width, _ = image.shape
|
16 |
+
anno_x = [x[0] for x in anno]
|
17 |
+
anno_y = [x[1] for x in anno]
|
18 |
+
bbox_xmin = min(anno_x)
|
19 |
+
bbox_ymin = min(anno_y)
|
20 |
+
bbox_xmax = max(anno_x)
|
21 |
+
bbox_ymax = max(anno_y)
|
22 |
+
bbox_width = bbox_xmax - bbox_xmin
|
23 |
+
bbox_height = bbox_ymax - bbox_ymin
|
24 |
+
scale = 1.3
|
25 |
+
bbox_xmin -= int((scale-1)/2*bbox_width)
|
26 |
+
bbox_ymin -= int((scale-1)/2*bbox_height)
|
27 |
+
bbox_width *= scale
|
28 |
+
bbox_height *= scale
|
29 |
+
bbox_width = int(bbox_width)
|
30 |
+
bbox_height = int(bbox_height)
|
31 |
+
bbox_xmin = max(bbox_xmin, 0)
|
32 |
+
bbox_ymin = max(bbox_ymin, 0)
|
33 |
+
bbox_width = min(bbox_width, image_width-bbox_xmin-1)
|
34 |
+
bbox_height = min(bbox_height, image_height-bbox_ymin-1)
|
35 |
+
anno = [[(x-bbox_xmin)/bbox_width, (y-bbox_ymin)/bbox_height] for x,y in anno]
|
36 |
+
|
37 |
+
bbox_xmax = bbox_xmin + bbox_width
|
38 |
+
bbox_ymax = bbox_ymin + bbox_height
|
39 |
+
image_crop = image[bbox_ymin:bbox_ymax, bbox_xmin:bbox_xmax, :]
|
40 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
41 |
+
return image_crop, anno
|
42 |
+
|
43 |
+
def process_wflw(anno, target_size):
|
44 |
+
image_name = anno[-1]
|
45 |
+
image_path = os.path.join('..', 'data', 'WFLW', 'WFLW_images', image_name)
|
46 |
+
image = cv2.imread(image_path)
|
47 |
+
image_height, image_width, _ = image.shape
|
48 |
+
lms = anno[:196]
|
49 |
+
lms = [float(x) for x in lms]
|
50 |
+
lms_x = lms[0::2]
|
51 |
+
lms_y = lms[1::2]
|
52 |
+
lms_x = [x if x >=0 else 0 for x in lms_x]
|
53 |
+
lms_x = [x if x <=image_width else image_width for x in lms_x]
|
54 |
+
lms_y = [y if y >=0 else 0 for y in lms_y]
|
55 |
+
lms_y = [y if y <=image_height else image_height for y in lms_y]
|
56 |
+
lms = [[x,y] for x,y in zip(lms_x, lms_y)]
|
57 |
+
lms = [x for z in lms for x in z]
|
58 |
+
bbox = anno[196:200]
|
59 |
+
bbox = [float(x) for x in bbox]
|
60 |
+
attrs = anno[200:206]
|
61 |
+
attrs = np.array([int(x) for x in attrs])
|
62 |
+
bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax = bbox
|
63 |
+
|
64 |
+
width = bbox_xmax - bbox_xmin
|
65 |
+
height = bbox_ymax - bbox_ymin
|
66 |
+
scale = 1.2
|
67 |
+
bbox_xmin -= width * (scale-1)/2
|
68 |
+
# remove a part of top area for alignment, see details in paper
|
69 |
+
bbox_ymin += height * (scale-1)/2
|
70 |
+
bbox_xmax += width * (scale-1)/2
|
71 |
+
bbox_ymax += height * (scale-1)/2
|
72 |
+
bbox_xmin = max(bbox_xmin, 0)
|
73 |
+
bbox_ymin = max(bbox_ymin, 0)
|
74 |
+
bbox_xmax = min(bbox_xmax, image_width-1)
|
75 |
+
bbox_ymax = min(bbox_ymax, image_height-1)
|
76 |
+
width = bbox_xmax - bbox_xmin
|
77 |
+
height = bbox_ymax - bbox_ymin
|
78 |
+
image_crop = image[int(bbox_ymin):int(bbox_ymax), int(bbox_xmin):int(bbox_xmax), :]
|
79 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
80 |
+
|
81 |
+
tmp1 = [bbox_xmin, bbox_ymin]*98
|
82 |
+
tmp1 = np.array(tmp1)
|
83 |
+
tmp2 = [width, height]*98
|
84 |
+
tmp2 = np.array(tmp2)
|
85 |
+
lms = np.array(lms) - tmp1
|
86 |
+
lms = lms / tmp2
|
87 |
+
lms = lms.tolist()
|
88 |
+
lms = zip(lms[0::2], lms[1::2])
|
89 |
+
return image_crop, list(lms)
|
90 |
+
|
91 |
+
def process_celeba(root_folder, image_name, bbox, target_size):
|
92 |
+
image = cv2.imread(os.path.join(root_folder, 'CELEBA', 'img_celeba', image_name))
|
93 |
+
image_height, image_width, _ = image.shape
|
94 |
+
xmin, ymin, xmax, ymax = bbox
|
95 |
+
width = xmax - xmin + 1
|
96 |
+
height = ymax - ymin + 1
|
97 |
+
scale = 1.2
|
98 |
+
xmin -= width * (scale-1)/2
|
99 |
+
# remove a part of top area for alignment, see details in paper
|
100 |
+
ymin += height * (scale+0.1-1)/2
|
101 |
+
xmax += width * (scale-1)/2
|
102 |
+
ymax += height * (scale-1)/2
|
103 |
+
xmin = max(xmin, 0)
|
104 |
+
ymin = max(ymin, 0)
|
105 |
+
xmax = min(xmax, image_width-1)
|
106 |
+
ymax = min(ymax, image_height-1)
|
107 |
+
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :]
|
108 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
109 |
+
return image_crop
|
110 |
+
|
111 |
+
def process_cofw_68_train(image, bbox, anno, target_size):
|
112 |
+
image_height, image_width, _ = image.shape
|
113 |
+
anno_x = anno[:29]
|
114 |
+
anno_y = anno[29:58]
|
115 |
+
xmin, ymin, width, height = bbox
|
116 |
+
xmax = xmin + width -1
|
117 |
+
ymax = ymin + height -1
|
118 |
+
scale = 1.3
|
119 |
+
xmin -= width * (scale-1)/2
|
120 |
+
ymin -= height * (scale-1)/2
|
121 |
+
xmax += width * (scale-1)/2
|
122 |
+
ymax += height * (scale-1)/2
|
123 |
+
xmin = max(xmin, 0)
|
124 |
+
ymin = max(ymin, 0)
|
125 |
+
xmax = min(xmax, image_width-1)
|
126 |
+
ymax = min(ymax, image_height-1)
|
127 |
+
anno_x = (anno_x - xmin) / (xmax - xmin)
|
128 |
+
anno_y = (anno_y - ymin) / (ymax - ymin)
|
129 |
+
anno = np.concatenate([anno_x.reshape(-1,1), anno_y.reshape(-1,1)], axis=1)
|
130 |
+
anno = list(anno)
|
131 |
+
anno = [list(x) for x in anno]
|
132 |
+
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :]
|
133 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
134 |
+
return image_crop, anno
|
135 |
+
|
136 |
+
def process_cofw_68_test(image, bbox, anno, target_size):
|
137 |
+
image_height, image_width, _ = image.shape
|
138 |
+
anno_x = anno[:,0].flatten()
|
139 |
+
anno_y = anno[:,1].flatten()
|
140 |
+
|
141 |
+
xmin, ymin, width, height = bbox
|
142 |
+
xmax = xmin + width -1
|
143 |
+
ymax = ymin + height -1
|
144 |
+
|
145 |
+
scale = 1.3
|
146 |
+
xmin -= width * (scale-1)/2
|
147 |
+
ymin -= height * (scale-1)/2
|
148 |
+
xmax += width * (scale-1)/2
|
149 |
+
ymax += height * (scale-1)/2
|
150 |
+
xmin = max(xmin, 0)
|
151 |
+
ymin = max(ymin, 0)
|
152 |
+
xmax = min(xmax, image_width-1)
|
153 |
+
ymax = min(ymax, image_height-1)
|
154 |
+
anno_x = (anno_x - xmin) / (xmax - xmin)
|
155 |
+
anno_y = (anno_y - ymin) / (ymax - ymin)
|
156 |
+
anno = np.concatenate([anno_x.reshape(-1,1), anno_y.reshape(-1,1)], axis=1)
|
157 |
+
anno = list(anno)
|
158 |
+
anno = [list(x) for x in anno]
|
159 |
+
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :]
|
160 |
+
image_crop = cv2.resize(image_crop, (target_size, target_size))
|
161 |
+
return image_crop, anno
|
162 |
+
|
163 |
+
def gen_meanface(root_folder, data_name):
|
164 |
+
with open(os.path.join(root_folder, data_name, 'train_300W.txt'), 'r') as f:
|
165 |
+
annos = f.readlines()
|
166 |
+
annos = [x.strip().split()[1:] for x in annos]
|
167 |
+
annos = [[float(x) for x in anno] for anno in annos]
|
168 |
+
annos = np.array(annos)
|
169 |
+
meanface = np.mean(annos, axis=0)
|
170 |
+
meanface = meanface.tolist()
|
171 |
+
meanface = [str(x) for x in meanface]
|
172 |
+
|
173 |
+
with open(os.path.join(root_folder, data_name, 'meanface.txt'), 'w') as f:
|
174 |
+
f.write(' '.join(meanface))
|
175 |
+
|
176 |
+
def convert_wflw(root_folder, data_name):
|
177 |
+
with open(os.path.join(root_folder, data_name, 'test_WFLW_98.txt'), 'r') as f:
|
178 |
+
annos = f.readlines()
|
179 |
+
annos = [x.strip().split() for x in annos]
|
180 |
+
annos_new = []
|
181 |
+
for anno in annos:
|
182 |
+
annos_new.append([])
|
183 |
+
# name
|
184 |
+
annos_new[-1].append(anno[0])
|
185 |
+
anno = anno[1:]
|
186 |
+
# jaw
|
187 |
+
for i in range(17):
|
188 |
+
annos_new[-1].append(anno[i*2*2])
|
189 |
+
annos_new[-1].append(anno[i*2*2+1])
|
190 |
+
# left eyebrow
|
191 |
+
annos_new[-1].append(anno[33*2])
|
192 |
+
annos_new[-1].append(anno[33*2+1])
|
193 |
+
annos_new[-1].append(anno[34*2])
|
194 |
+
annos_new[-1].append(str((float(anno[34*2+1])+float(anno[41*2+1]))/2))
|
195 |
+
annos_new[-1].append(anno[35*2])
|
196 |
+
annos_new[-1].append(str((float(anno[35*2+1])+float(anno[40*2+1]))/2))
|
197 |
+
annos_new[-1].append(anno[36*2])
|
198 |
+
annos_new[-1].append(str((float(anno[36*2+1])+float(anno[39*2+1]))/2))
|
199 |
+
annos_new[-1].append(anno[37*2])
|
200 |
+
annos_new[-1].append(str((float(anno[37*2+1])+float(anno[38*2+1]))/2))
|
201 |
+
# right eyebrow
|
202 |
+
annos_new[-1].append(anno[42*2])
|
203 |
+
annos_new[-1].append(str((float(anno[42*2+1])+float(anno[50*2+1]))/2))
|
204 |
+
annos_new[-1].append(anno[43*2])
|
205 |
+
annos_new[-1].append(str((float(anno[43*2+1])+float(anno[49*2+1]))/2))
|
206 |
+
annos_new[-1].append(anno[44*2])
|
207 |
+
annos_new[-1].append(str((float(anno[44*2+1])+float(anno[48*2+1]))/2))
|
208 |
+
annos_new[-1].append(anno[45*2])
|
209 |
+
annos_new[-1].append(str((float(anno[45*2+1])+float(anno[47*2+1]))/2))
|
210 |
+
annos_new[-1].append(anno[46*2])
|
211 |
+
annos_new[-1].append(anno[46*2+1])
|
212 |
+
# nose
|
213 |
+
for i in range(51, 60):
|
214 |
+
annos_new[-1].append(anno[i*2])
|
215 |
+
annos_new[-1].append(anno[i*2+1])
|
216 |
+
# left eye
|
217 |
+
annos_new[-1].append(anno[60*2])
|
218 |
+
annos_new[-1].append(anno[60*2+1])
|
219 |
+
annos_new[-1].append(str(0.666*float(anno[61*2])+0.333*float(anno[62*2])))
|
220 |
+
annos_new[-1].append(str(0.666*float(anno[61*2+1])+0.333*float(anno[62*2+1])))
|
221 |
+
annos_new[-1].append(str(0.666*float(anno[63*2])+0.333*float(anno[62*2])))
|
222 |
+
annos_new[-1].append(str(0.666*float(anno[63*2+1])+0.333*float(anno[62*2+1])))
|
223 |
+
annos_new[-1].append(anno[64*2])
|
224 |
+
annos_new[-1].append(anno[64*2+1])
|
225 |
+
annos_new[-1].append(str(0.666*float(anno[65*2])+0.333*float(anno[66*2])))
|
226 |
+
annos_new[-1].append(str(0.666*float(anno[65*2+1])+0.333*float(anno[66*2+1])))
|
227 |
+
annos_new[-1].append(str(0.666*float(anno[67*2])+0.333*float(anno[66*2])))
|
228 |
+
annos_new[-1].append(str(0.666*float(anno[67*2+1])+0.333*float(anno[66*2+1])))
|
229 |
+
# right eye
|
230 |
+
annos_new[-1].append(anno[68*2])
|
231 |
+
annos_new[-1].append(anno[68*2+1])
|
232 |
+
annos_new[-1].append(str(0.666*float(anno[69*2])+0.333*float(anno[70*2])))
|
233 |
+
annos_new[-1].append(str(0.666*float(anno[69*2+1])+0.333*float(anno[70*2+1])))
|
234 |
+
annos_new[-1].append(str(0.666*float(anno[71*2])+0.333*float(anno[70*2])))
|
235 |
+
annos_new[-1].append(str(0.666*float(anno[71*2+1])+0.333*float(anno[70*2+1])))
|
236 |
+
annos_new[-1].append(anno[72*2])
|
237 |
+
annos_new[-1].append(anno[72*2+1])
|
238 |
+
annos_new[-1].append(str(0.666*float(anno[73*2])+0.333*float(anno[74*2])))
|
239 |
+
annos_new[-1].append(str(0.666*float(anno[73*2+1])+0.333*float(anno[74*2+1])))
|
240 |
+
annos_new[-1].append(str(0.666*float(anno[75*2])+0.333*float(anno[74*2])))
|
241 |
+
annos_new[-1].append(str(0.666*float(anno[75*2+1])+0.333*float(anno[74*2+1])))
|
242 |
+
# mouth
|
243 |
+
for i in range(76, 96):
|
244 |
+
annos_new[-1].append(anno[i*2])
|
245 |
+
annos_new[-1].append(anno[i*2+1])
|
246 |
+
|
247 |
+
with open(os.path.join(root_folder, data_name, 'test_WFLW.txt'), 'w') as f:
|
248 |
+
for anno in annos_new:
|
249 |
+
f.write(' '.join(anno)+'\n')
|
250 |
+
|
251 |
+
def gen_data(root_folder, data_name, target_size):
|
252 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_train')):
|
253 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_train'))
|
254 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test')):
|
255 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test'))
|
256 |
+
################################################################################################################
|
257 |
+
if data_name == 'CELEBA':
|
258 |
+
os.system('rmdir ../data/CELEBA/images_test')
|
259 |
+
with open(os.path.join(root_folder, data_name, 'celeba_bboxes.txt'), 'r') as f:
|
260 |
+
bboxes = f.readlines()
|
261 |
+
|
262 |
+
bboxes = [x.strip().split() for x in bboxes]
|
263 |
+
with open(os.path.join(root_folder, data_name, 'train.txt'), 'w') as f:
|
264 |
+
for bbox in bboxes:
|
265 |
+
image_name = bbox[0]
|
266 |
+
print(image_name)
|
267 |
+
f.write(image_name+'\n')
|
268 |
+
bbox = bbox[1:]
|
269 |
+
bbox = [int(x) for x in bbox]
|
270 |
+
image_crop = process_celeba(root_folder, image_name, bbox, target_size)
|
271 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_train', image_name), image_crop)
|
272 |
+
################################################################################################################
|
273 |
+
elif data_name == 'data_300W_CELEBA':
|
274 |
+
os.system('cp -r ../data/CELEBA/images_train ../data/data_300W_CELEBA/.')
|
275 |
+
os.system('cp ../data/CELEBA/train.txt ../data/data_300W_CELEBA/train_CELEBA.txt')
|
276 |
+
|
277 |
+
os.system('rmdir ../data/data_300W_CELEBA/images_test')
|
278 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_300W')):
|
279 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test_300W'))
|
280 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_COFW')):
|
281 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test_COFW'))
|
282 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_WFLW')):
|
283 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test_WFLW'))
|
284 |
+
|
285 |
+
# train for data_300W
|
286 |
+
folders_train = ['afw', 'helen/trainset', 'lfpw/trainset']
|
287 |
+
annos_train = {}
|
288 |
+
for folder_train in folders_train:
|
289 |
+
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_train)))
|
290 |
+
image_files = [x for x in all_files if '.pts' not in x]
|
291 |
+
label_files = [x for x in all_files if '.pts' in x]
|
292 |
+
assert len(image_files) == len(label_files)
|
293 |
+
for image_name, label_name in zip(image_files, label_files):
|
294 |
+
print(image_name)
|
295 |
+
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_train, image_name, label_name, target_size)
|
296 |
+
image_crop_name = folder_train.replace('/', '_')+'_'+image_name
|
297 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_train', image_crop_name), image_crop)
|
298 |
+
annos_train[image_crop_name] = anno
|
299 |
+
with open(os.path.join(root_folder, data_name, 'train_300W.txt'), 'w') as f:
|
300 |
+
for image_crop_name, anno in annos_train.items():
|
301 |
+
f.write(image_crop_name+' ')
|
302 |
+
for x,y in anno:
|
303 |
+
f.write(str(x)+' '+str(y)+' ')
|
304 |
+
f.write('\n')
|
305 |
+
|
306 |
+
# test for data_300W
|
307 |
+
folders_test = ['helen/testset', 'lfpw/testset', 'ibug']
|
308 |
+
annos_test = {}
|
309 |
+
for folder_test in folders_test:
|
310 |
+
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_test)))
|
311 |
+
image_files = [x for x in all_files if '.pts' not in x]
|
312 |
+
label_files = [x for x in all_files if '.pts' in x]
|
313 |
+
assert len(image_files) == len(label_files)
|
314 |
+
for image_name, label_name in zip(image_files, label_files):
|
315 |
+
print(image_name)
|
316 |
+
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_test, image_name, label_name, target_size)
|
317 |
+
image_crop_name = folder_test.replace('/', '_')+'_'+image_name
|
318 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_300W', image_crop_name), image_crop)
|
319 |
+
annos_test[image_crop_name] = anno
|
320 |
+
with open(os.path.join(root_folder, data_name, 'test_300W.txt'), 'w') as f:
|
321 |
+
for image_crop_name, anno in annos_test.items():
|
322 |
+
f.write(image_crop_name+' ')
|
323 |
+
for x,y in anno:
|
324 |
+
f.write(str(x)+' '+str(y)+' ')
|
325 |
+
f.write('\n')
|
326 |
+
|
327 |
+
# test for COFW_68
|
328 |
+
test_mat = hdf5storage.loadmat(os.path.join('../data/COFW', 'COFW_test_color.mat'))
|
329 |
+
images = test_mat['IsT']
|
330 |
+
|
331 |
+
bboxes_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_CELEBA', 'cofw68_test_bboxes.mat'))
|
332 |
+
bboxes = bboxes_mat['bboxes']
|
333 |
+
image_num = images.shape[0]
|
334 |
+
with open('../data/data_300W_CELEBA/test_COFW.txt', 'w') as f:
|
335 |
+
for i in range(image_num):
|
336 |
+
image = images[i,0]
|
337 |
+
# grayscale
|
338 |
+
if len(image.shape) == 2:
|
339 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
340 |
+
# swap rgb channel to bgr
|
341 |
+
else:
|
342 |
+
image = image[:,:,::-1]
|
343 |
+
|
344 |
+
bbox = bboxes[i,:]
|
345 |
+
anno_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_CELEBA/cofw68_test_annotations', str(i+1)+'_points.mat'))
|
346 |
+
anno = anno_mat['Points']
|
347 |
+
image_crop, anno = process_cofw_68_test(image, bbox, anno, target_size)
|
348 |
+
pad_num = 4-len(str(i+1))
|
349 |
+
image_crop_name = 'cofw_test_' + '0' * pad_num + str(i+1) + '.jpg'
|
350 |
+
cv2.imwrite(os.path.join('../data/data_300W_CELEBA/images_test_COFW', image_crop_name), image_crop)
|
351 |
+
f.write(image_crop_name+' ')
|
352 |
+
for x,y in anno:
|
353 |
+
f.write(str(x)+' '+str(y)+' ')
|
354 |
+
f.write('\n')
|
355 |
+
|
356 |
+
# test for WFLW_68
|
357 |
+
test_file = 'list_98pt_rect_attr_test.txt'
|
358 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', test_file), 'r') as f:
|
359 |
+
annos_test = f.readlines()
|
360 |
+
annos_test = [x.strip().split() for x in annos_test]
|
361 |
+
names_mapping = {}
|
362 |
+
count = 1
|
363 |
+
with open(os.path.join(root_folder, 'data_300W_CELEBA', 'test_WFLW_98.txt'), 'w') as f:
|
364 |
+
for anno_test in annos_test:
|
365 |
+
image_crop, anno = process_wflw(anno_test, target_size)
|
366 |
+
pad_num = 4-len(str(count))
|
367 |
+
image_crop_name = 'wflw_test_' + '0' * pad_num + str(count) + '.jpg'
|
368 |
+
print(image_crop_name)
|
369 |
+
names_mapping[anno_test[0]+'_'+anno_test[-1]] = [image_crop_name, anno]
|
370 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_WFLW', image_crop_name), image_crop)
|
371 |
+
f.write(image_crop_name+' ')
|
372 |
+
for x,y in list(anno):
|
373 |
+
f.write(str(x)+' '+str(y)+' ')
|
374 |
+
f.write('\n')
|
375 |
+
count += 1
|
376 |
+
|
377 |
+
convert_wflw(root_folder, data_name)
|
378 |
+
|
379 |
+
gen_meanface(root_folder, data_name)
|
380 |
+
################################################################################################################
|
381 |
+
elif data_name == 'data_300W_COFW_WFLW':
|
382 |
+
|
383 |
+
os.system('rmdir ../data/data_300W_COFW_WFLW/images_test')
|
384 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_300W')):
|
385 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test_300W'))
|
386 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_COFW')):
|
387 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test_COFW'))
|
388 |
+
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_WFLW')):
|
389 |
+
os.mkdir(os.path.join(root_folder, data_name, 'images_test_WFLW'))
|
390 |
+
|
391 |
+
# train for data_300W
|
392 |
+
folders_train = ['afw', 'helen/trainset', 'lfpw/trainset']
|
393 |
+
annos_train = {}
|
394 |
+
for folder_train in folders_train:
|
395 |
+
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_train)))
|
396 |
+
image_files = [x for x in all_files if '.pts' not in x]
|
397 |
+
label_files = [x for x in all_files if '.pts' in x]
|
398 |
+
assert len(image_files) == len(label_files)
|
399 |
+
for image_name, label_name in zip(image_files, label_files):
|
400 |
+
print(image_name)
|
401 |
+
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_train, image_name, label_name, target_size)
|
402 |
+
image_crop_name = folder_train.replace('/', '_')+'_'+image_name
|
403 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_train', image_crop_name), image_crop)
|
404 |
+
annos_train[image_crop_name] = anno
|
405 |
+
with open(os.path.join(root_folder, data_name, 'train_300W.txt'), 'w') as f:
|
406 |
+
for image_crop_name, anno in annos_train.items():
|
407 |
+
f.write(image_crop_name+' ')
|
408 |
+
for x,y in anno:
|
409 |
+
f.write(str(x)+' '+str(y)+' ')
|
410 |
+
f.write('\n')
|
411 |
+
|
412 |
+
# test for data_300W
|
413 |
+
folders_test = ['helen/testset', 'lfpw/testset', 'ibug']
|
414 |
+
annos_test = {}
|
415 |
+
for folder_test in folders_test:
|
416 |
+
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_test)))
|
417 |
+
image_files = [x for x in all_files if '.pts' not in x]
|
418 |
+
label_files = [x for x in all_files if '.pts' in x]
|
419 |
+
assert len(image_files) == len(label_files)
|
420 |
+
for image_name, label_name in zip(image_files, label_files):
|
421 |
+
print(image_name)
|
422 |
+
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_test, image_name, label_name, target_size)
|
423 |
+
image_crop_name = folder_test.replace('/', '_')+'_'+image_name
|
424 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_300W', image_crop_name), image_crop)
|
425 |
+
annos_test[image_crop_name] = anno
|
426 |
+
with open(os.path.join(root_folder, data_name, 'test_300W.txt'), 'w') as f:
|
427 |
+
for image_crop_name, anno in annos_test.items():
|
428 |
+
f.write(image_crop_name+' ')
|
429 |
+
for x,y in anno:
|
430 |
+
f.write(str(x)+' '+str(y)+' ')
|
431 |
+
f.write('\n')
|
432 |
+
|
433 |
+
# train for COFW_68
|
434 |
+
###################
|
435 |
+
train_file = 'COFW_train_color.mat'
|
436 |
+
train_mat = hdf5storage.loadmat(os.path.join(root_folder, 'COFW', train_file))
|
437 |
+
images = train_mat['IsTr']
|
438 |
+
bboxes = train_mat['bboxesTr']
|
439 |
+
annos = train_mat['phisTr']
|
440 |
+
|
441 |
+
count = 1
|
442 |
+
with open('../data/data_300W_COFW_WFLW/train_COFW.txt', 'w') as f:
|
443 |
+
for i in range(images.shape[0]):
|
444 |
+
image = images[i, 0]
|
445 |
+
# grayscale
|
446 |
+
if len(image.shape) == 2:
|
447 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
448 |
+
# swap rgb channel to bgr
|
449 |
+
else:
|
450 |
+
image = image[:,:,::-1]
|
451 |
+
bbox = bboxes[i, :]
|
452 |
+
anno = annos[i, :]
|
453 |
+
image_crop, anno = process_cofw_68_train(image, bbox, anno, target_size)
|
454 |
+
pad_num = 4-len(str(count))
|
455 |
+
image_crop_name = 'cofw_train_' + '0' * pad_num + str(count) + '.jpg'
|
456 |
+
f.write(image_crop_name+'\n')
|
457 |
+
cv2.imwrite(os.path.join(root_folder, 'data_300W_COFW_WFLW', 'images_train', image_crop_name), image_crop)
|
458 |
+
count += 1
|
459 |
+
###################
|
460 |
+
|
461 |
+
# test for COFW_68
|
462 |
+
test_mat = hdf5storage.loadmat(os.path.join('../data/COFW', 'COFW_test_color.mat'))
|
463 |
+
images = test_mat['IsT']
|
464 |
+
|
465 |
+
bboxes_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_COFW_WFLW', 'cofw68_test_bboxes.mat'))
|
466 |
+
bboxes = bboxes_mat['bboxes']
|
467 |
+
image_num = images.shape[0]
|
468 |
+
with open('../data/data_300W_COFW_WFLW/test_COFW.txt', 'w') as f:
|
469 |
+
for i in range(image_num):
|
470 |
+
image = images[i,0]
|
471 |
+
# grayscale
|
472 |
+
if len(image.shape) == 2:
|
473 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
474 |
+
# swap rgb channel to bgr
|
475 |
+
else:
|
476 |
+
image = image[:,:,::-1]
|
477 |
+
|
478 |
+
bbox = bboxes[i,:]
|
479 |
+
anno_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_COFW_WFLW/cofw68_test_annotations', str(i+1)+'_points.mat'))
|
480 |
+
anno = anno_mat['Points']
|
481 |
+
image_crop, anno = process_cofw_68_test(image, bbox, anno, target_size)
|
482 |
+
pad_num = 4-len(str(i+1))
|
483 |
+
image_crop_name = 'cofw_test_' + '0' * pad_num + str(i+1) + '.jpg'
|
484 |
+
cv2.imwrite(os.path.join('../data/data_300W_COFW_WFLW/images_test_COFW', image_crop_name), image_crop)
|
485 |
+
f.write(image_crop_name+' ')
|
486 |
+
for x,y in anno:
|
487 |
+
f.write(str(x)+' '+str(y)+' ')
|
488 |
+
f.write('\n')
|
489 |
+
|
490 |
+
# train for WFLW_68
|
491 |
+
train_file = 'list_98pt_rect_attr_train.txt'
|
492 |
+
with open(os.path.join('../data', 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', train_file), 'r') as f:
|
493 |
+
annos_train = f.readlines()
|
494 |
+
annos_train = [x.strip().split() for x in annos_train]
|
495 |
+
count = 1
|
496 |
+
with open('../data/data_300W_COFW_WFLW/train_WFLW.txt', 'w') as f:
|
497 |
+
for anno_train in annos_train:
|
498 |
+
image_crop, anno = process_wflw(anno_train, target_size)
|
499 |
+
pad_num = 4-len(str(count))
|
500 |
+
image_crop_name = 'wflw_train_' + '0' * pad_num + str(count) + '.jpg'
|
501 |
+
print(image_crop_name)
|
502 |
+
f.write(image_crop_name+'\n')
|
503 |
+
cv2.imwrite(os.path.join(root_folder, 'data_300W_COFW_WFLW', 'images_train', image_crop_name), image_crop)
|
504 |
+
count += 1
|
505 |
+
|
506 |
+
# test for WFLW_68
|
507 |
+
test_file = 'list_98pt_rect_attr_test.txt'
|
508 |
+
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', test_file), 'r') as f:
|
509 |
+
annos_test = f.readlines()
|
510 |
+
annos_test = [x.strip().split() for x in annos_test]
|
511 |
+
names_mapping = {}
|
512 |
+
count = 1
|
513 |
+
with open(os.path.join(root_folder, 'data_300W_COFW_WFLW', 'test_WFLW_98.txt'), 'w') as f:
|
514 |
+
for anno_test in annos_test:
|
515 |
+
image_crop, anno = process_wflw(anno_test, target_size)
|
516 |
+
pad_num = 4-len(str(count))
|
517 |
+
image_crop_name = 'wflw_test_' + '0' * pad_num + str(count) + '.jpg'
|
518 |
+
print(image_crop_name)
|
519 |
+
names_mapping[anno_test[0]+'_'+anno_test[-1]] = [image_crop_name, anno]
|
520 |
+
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_WFLW', image_crop_name), image_crop)
|
521 |
+
f.write(image_crop_name+' ')
|
522 |
+
for x,y in list(anno):
|
523 |
+
f.write(str(x)+' '+str(y)+' ')
|
524 |
+
f.write('\n')
|
525 |
+
count += 1
|
526 |
+
|
527 |
+
convert_wflw(root_folder, data_name)
|
528 |
+
|
529 |
+
gen_meanface(root_folder, data_name)
|
530 |
+
else:
|
531 |
+
print('Wrong data!')
|
532 |
+
|
533 |
+
if __name__ == '__main__':
|
534 |
+
if len(sys.argv) < 2:
|
535 |
+
print('please input the data name.')
|
536 |
+
print('1. CELEBA')
|
537 |
+
print('2. data_300W_CELEBA')
|
538 |
+
print('3. data_300W_COFW_WFLW')
|
539 |
+
exit(0)
|
540 |
+
else:
|
541 |
+
data_name = sys.argv[1]
|
542 |
+
gen_data('../data', data_name, 256)
|
543 |
+
|
544 |
+
|
third_party/PIPNet/lib/tools.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
|
4 |
+
|
5 |
+
from math import floor
|
6 |
+
from third_party.PIPNet.FaceBoxesV2.faceboxes_detector import *
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.parallel
|
10 |
+
import torch.utils.data
|
11 |
+
import torchvision.transforms as transforms
|
12 |
+
import torchvision.models as models
|
13 |
+
|
14 |
+
from third_party.PIPNet.lib.networks import *
|
15 |
+
from third_party.PIPNet.lib.functions import *
|
16 |
+
from third_party.PIPNet.reverse_index import ri1, ri2
|
17 |
+
|
18 |
+
|
19 |
+
make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))
|
20 |
+
|
21 |
+
|
22 |
+
class Config:
|
23 |
+
def __init__(self):
|
24 |
+
self.det_head = "pip"
|
25 |
+
self.net_stride = 32
|
26 |
+
self.batch_size = 16
|
27 |
+
self.init_lr = 0.0001
|
28 |
+
self.num_epochs = 60
|
29 |
+
self.decay_steps = [30, 50]
|
30 |
+
self.input_size = 256
|
31 |
+
self.backbone = "resnet101"
|
32 |
+
self.pretrained = True
|
33 |
+
self.criterion_cls = "l2"
|
34 |
+
self.criterion_reg = "l1"
|
35 |
+
self.cls_loss_weight = 10
|
36 |
+
self.reg_loss_weight = 1
|
37 |
+
self.num_lms = 98
|
38 |
+
self.save_interval = self.num_epochs
|
39 |
+
self.num_nb = 10
|
40 |
+
self.use_gpu = True
|
41 |
+
self.gpu_id = 3
|
42 |
+
|
43 |
+
|
44 |
+
def get_lmk_model():
|
45 |
+
|
46 |
+
cfg = Config()
|
47 |
+
|
48 |
+
resnet101 = models.resnet101(pretrained=cfg.pretrained)
|
49 |
+
net = Pip_resnet101(
|
50 |
+
resnet101,
|
51 |
+
cfg.num_nb,
|
52 |
+
num_lms=cfg.num_lms,
|
53 |
+
input_size=cfg.input_size,
|
54 |
+
net_stride=cfg.net_stride,
|
55 |
+
)
|
56 |
+
|
57 |
+
if cfg.use_gpu:
|
58 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
59 |
+
else:
|
60 |
+
device = torch.device("cpu")
|
61 |
+
net = net.to(device)
|
62 |
+
|
63 |
+
weight_file = make_abs_path('../../../weights/PIPNet/epoch59.pth')
|
64 |
+
state_dict = torch.load(weight_file, map_location=device)
|
65 |
+
net.load_state_dict(state_dict)
|
66 |
+
|
67 |
+
detector = FaceBoxesDetector(
|
68 |
+
"FaceBoxes",
|
69 |
+
make_abs_path("./../../weights/PIPNet/FaceBoxesV2.pth"),
|
70 |
+
use_gpu=torch.cuda.is_available(),
|
71 |
+
device=device,
|
72 |
+
)
|
73 |
+
return net, detector
|
74 |
+
|
75 |
+
|
76 |
+
def demo_image(
|
77 |
+
image_file,
|
78 |
+
net,
|
79 |
+
detector,
|
80 |
+
input_size=256,
|
81 |
+
net_stride=32,
|
82 |
+
num_nb=10,
|
83 |
+
use_gpu=True,
|
84 |
+
device="cuda:0",
|
85 |
+
):
|
86 |
+
|
87 |
+
my_thresh = 0.6
|
88 |
+
det_box_scale = 1.2
|
89 |
+
net.eval()
|
90 |
+
preprocess = transforms.Compose(
|
91 |
+
[
|
92 |
+
transforms.Resize((256, 256)),
|
93 |
+
transforms.ToTensor(),
|
94 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
95 |
+
]
|
96 |
+
)
|
97 |
+
reverse_index1, reverse_index2, max_len = ri1, ri2, 17
|
98 |
+
# image = cv2.imread(image_file)
|
99 |
+
image = image_file
|
100 |
+
image_height, image_width, _ = image.shape
|
101 |
+
detections, _ = detector.detect(image, my_thresh, 1)
|
102 |
+
lmks = []
|
103 |
+
for i in range(len(detections)):
|
104 |
+
det_xmin = detections[i][2]
|
105 |
+
det_ymin = detections[i][3]
|
106 |
+
det_width = detections[i][4]
|
107 |
+
det_height = detections[i][5]
|
108 |
+
det_xmax = det_xmin + det_width - 1
|
109 |
+
det_ymax = det_ymin + det_height - 1
|
110 |
+
|
111 |
+
det_xmin -= int(det_width * (det_box_scale - 1) / 2)
|
112 |
+
# remove a part of top area for alignment, see paper for details
|
113 |
+
det_ymin += int(det_height * (det_box_scale - 1) / 2)
|
114 |
+
det_xmax += int(det_width * (det_box_scale - 1) / 2)
|
115 |
+
det_ymax += int(det_height * (det_box_scale - 1) / 2)
|
116 |
+
det_xmin = max(det_xmin, 0)
|
117 |
+
det_ymin = max(det_ymin, 0)
|
118 |
+
det_xmax = min(det_xmax, image_width - 1)
|
119 |
+
det_ymax = min(det_ymax, image_height - 1)
|
120 |
+
det_width = det_xmax - det_xmin + 1
|
121 |
+
det_height = det_ymax - det_ymin + 1
|
122 |
+
|
123 |
+
# cv2.rectangle(image, (det_xmin, det_ymin), (det_xmax, det_ymax), (0, 0, 255), 2)
|
124 |
+
|
125 |
+
det_crop = image[det_ymin:det_ymax, det_xmin:det_xmax, :]
|
126 |
+
det_crop = cv2.resize(det_crop, (input_size, input_size))
|
127 |
+
inputs = Image.fromarray(det_crop[:, :, ::-1].astype("uint8"), "RGB")
|
128 |
+
inputs = preprocess(inputs).unsqueeze(0)
|
129 |
+
inputs = inputs.to(device)
|
130 |
+
(
|
131 |
+
lms_pred_x,
|
132 |
+
lms_pred_y,
|
133 |
+
lms_pred_nb_x,
|
134 |
+
lms_pred_nb_y,
|
135 |
+
outputs_cls,
|
136 |
+
max_cls,
|
137 |
+
) = forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb)
|
138 |
+
lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten()
|
139 |
+
tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(98, max_len)
|
140 |
+
tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(98, max_len)
|
141 |
+
tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1, 1)
|
142 |
+
tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1, 1)
|
143 |
+
lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten()
|
144 |
+
lms_pred = lms_pred.cpu().numpy()
|
145 |
+
lms_pred_merge = lms_pred_merge.cpu().numpy()
|
146 |
+
lmk_ = []
|
147 |
+
for i in range(98):
|
148 |
+
x_pred = lms_pred_merge[i * 2] * det_width
|
149 |
+
y_pred = lms_pred_merge[i * 2 + 1] * det_height
|
150 |
+
|
151 |
+
# cv2.circle(
|
152 |
+
# image,
|
153 |
+
# (int(x_pred) + det_xmin, int(y_pred) + det_ymin),
|
154 |
+
# 1,
|
155 |
+
# (0, 0, 255),
|
156 |
+
# 1,
|
157 |
+
# )
|
158 |
+
|
159 |
+
lmk_.append([int(x_pred) + det_xmin, int(y_pred) + det_ymin])
|
160 |
+
lmks.append(np.array(lmk_))
|
161 |
+
|
162 |
+
# image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
163 |
+
# cv2.imwrite("./1_out.jpg", image_bgr)
|
164 |
+
|
165 |
+
return lmks
|
166 |
+
|
167 |
+
|
168 |
+
if __name__ == "__main__":
|
169 |
+
net, detector = get_lmk_model()
|
170 |
+
demo_image(
|
171 |
+
"/apdcephfs/private_ahbanliang/codes/Real-ESRGAN-master/tmp_frames/yanikefu/frame00000046.png",
|
172 |
+
net,
|
173 |
+
detector,
|
174 |
+
)
|
third_party/PIPNet/lib/train.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2, os
|
2 |
+
import sys
|
3 |
+
sys.path.insert(0, '..')
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import logging
|
7 |
+
import copy
|
8 |
+
import importlib
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
import torch.utils.data
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torchvision.transforms as transforms
|
16 |
+
import torchvision.datasets as datasets
|
17 |
+
import torchvision.models as models
|
18 |
+
|
19 |
+
from networks import *
|
20 |
+
import data_utils
|
21 |
+
from functions import *
|
22 |
+
from mobilenetv3 import mobilenetv3_large
|
23 |
+
|
24 |
+
if not len(sys.argv) == 2:
|
25 |
+
print('Format:')
|
26 |
+
print('python lib/train.py config_file')
|
27 |
+
exit(0)
|
28 |
+
experiment_name = sys.argv[1].split('/')[-1][:-3]
|
29 |
+
data_name = sys.argv[1].split('/')[-2]
|
30 |
+
config_path = '.experiments.{}.{}'.format(data_name, experiment_name)
|
31 |
+
|
32 |
+
my_config = importlib.import_module(config_path, package='PIPNet')
|
33 |
+
Config = getattr(my_config, 'Config')
|
34 |
+
cfg = Config()
|
35 |
+
cfg.experiment_name = experiment_name
|
36 |
+
cfg.data_name = data_name
|
37 |
+
|
38 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(cfg.gpu_id)
|
39 |
+
|
40 |
+
if not os.path.exists(os.path.join('./snapshots', cfg.data_name)):
|
41 |
+
os.mkdir(os.path.join('./snapshots', cfg.data_name))
|
42 |
+
save_dir = os.path.join('./snapshots', cfg.data_name, cfg.experiment_name)
|
43 |
+
if not os.path.exists(save_dir):
|
44 |
+
os.mkdir(save_dir)
|
45 |
+
|
46 |
+
if not os.path.exists(os.path.join('./logs', cfg.data_name)):
|
47 |
+
os.mkdir(os.path.join('./logs', cfg.data_name))
|
48 |
+
log_dir = os.path.join('./logs', cfg.data_name, cfg.experiment_name)
|
49 |
+
if not os.path.exists(log_dir):
|
50 |
+
os.mkdir(log_dir)
|
51 |
+
|
52 |
+
logging.basicConfig(filename=os.path.join(log_dir, 'train.log'), level=logging.INFO)
|
53 |
+
|
54 |
+
print('###########################################')
|
55 |
+
print('experiment_name:', cfg.experiment_name)
|
56 |
+
print('data_name:', cfg.data_name)
|
57 |
+
print('det_head:', cfg.det_head)
|
58 |
+
print('net_stride:', cfg.net_stride)
|
59 |
+
print('batch_size:', cfg.batch_size)
|
60 |
+
print('init_lr:', cfg.init_lr)
|
61 |
+
print('num_epochs:', cfg.num_epochs)
|
62 |
+
print('decay_steps:', cfg.decay_steps)
|
63 |
+
print('input_size:', cfg.input_size)
|
64 |
+
print('backbone:', cfg.backbone)
|
65 |
+
print('pretrained:', cfg.pretrained)
|
66 |
+
print('criterion_cls:', cfg.criterion_cls)
|
67 |
+
print('criterion_reg:', cfg.criterion_reg)
|
68 |
+
print('cls_loss_weight:', cfg.cls_loss_weight)
|
69 |
+
print('reg_loss_weight:', cfg.reg_loss_weight)
|
70 |
+
print('num_lms:', cfg.num_lms)
|
71 |
+
print('save_interval:', cfg.save_interval)
|
72 |
+
print('num_nb:', cfg.num_nb)
|
73 |
+
print('use_gpu:', cfg.use_gpu)
|
74 |
+
print('gpu_id:', cfg.gpu_id)
|
75 |
+
print('###########################################')
|
76 |
+
logging.info('###########################################')
|
77 |
+
logging.info('experiment_name: {}'.format(cfg.experiment_name))
|
78 |
+
logging.info('data_name: {}'.format(cfg.data_name))
|
79 |
+
logging.info('det_head: {}'.format(cfg.det_head))
|
80 |
+
logging.info('net_stride: {}'.format(cfg.net_stride))
|
81 |
+
logging.info('batch_size: {}'.format(cfg.batch_size))
|
82 |
+
logging.info('init_lr: {}'.format(cfg.init_lr))
|
83 |
+
logging.info('num_epochs: {}'.format(cfg.num_epochs))
|
84 |
+
logging.info('decay_steps: {}'.format(cfg.decay_steps))
|
85 |
+
logging.info('input_size: {}'.format(cfg.input_size))
|
86 |
+
logging.info('backbone: {}'.format(cfg.backbone))
|
87 |
+
logging.info('pretrained: {}'.format(cfg.pretrained))
|
88 |
+
logging.info('criterion_cls: {}'.format(cfg.criterion_cls))
|
89 |
+
logging.info('criterion_reg: {}'.format(cfg.criterion_reg))
|
90 |
+
logging.info('cls_loss_weight: {}'.format(cfg.cls_loss_weight))
|
91 |
+
logging.info('reg_loss_weight: {}'.format(cfg.reg_loss_weight))
|
92 |
+
logging.info('num_lms: {}'.format(cfg.num_lms))
|
93 |
+
logging.info('save_interval: {}'.format(cfg.save_interval))
|
94 |
+
logging.info('num_nb: {}'.format(cfg.num_nb))
|
95 |
+
logging.info('use_gpu: {}'.format(cfg.use_gpu))
|
96 |
+
logging.info('gpu_id: {}'.format(cfg.gpu_id))
|
97 |
+
logging.info('###########################################')
|
98 |
+
|
99 |
+
if cfg.det_head == 'pip':
|
100 |
+
meanface_indices, _, _, _ = get_meanface(os.path.join('data', cfg.data_name, 'meanface.txt'), cfg.num_nb)
|
101 |
+
|
102 |
+
|
103 |
+
if cfg.det_head == 'pip':
|
104 |
+
if cfg.backbone == 'resnet18':
|
105 |
+
resnet18 = models.resnet18(pretrained=cfg.pretrained)
|
106 |
+
net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
107 |
+
elif cfg.backbone == 'resnet50':
|
108 |
+
resnet50 = models.resnet50(pretrained=cfg.pretrained)
|
109 |
+
net = Pip_resnet50(resnet50, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
110 |
+
elif cfg.backbone == 'resnet101':
|
111 |
+
resnet101 = models.resnet101(pretrained=cfg.pretrained)
|
112 |
+
net = Pip_resnet101(resnet101, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
113 |
+
elif cfg.backbone == 'mobilenet_v2':
|
114 |
+
mbnet = models.mobilenet_v2(pretrained=cfg.pretrained)
|
115 |
+
net = Pip_mbnetv2(mbnet, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
116 |
+
elif cfg.backbone == 'mobilenet_v3':
|
117 |
+
mbnet = mobilenetv3_large()
|
118 |
+
if cfg.pretrained:
|
119 |
+
mbnet.load_state_dict(torch.load('lib/mobilenetv3-large-1cd25616.pth'))
|
120 |
+
net = Pip_mbnetv3(mbnet, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
121 |
+
else:
|
122 |
+
print('No such backbone!')
|
123 |
+
exit(0)
|
124 |
+
else:
|
125 |
+
print('No such head:', cfg.det_head)
|
126 |
+
exit(0)
|
127 |
+
|
128 |
+
if cfg.use_gpu:
|
129 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
130 |
+
else:
|
131 |
+
device = torch.device("cpu")
|
132 |
+
net = net.to(device)
|
133 |
+
|
134 |
+
criterion_cls = None
|
135 |
+
if cfg.criterion_cls == 'l2':
|
136 |
+
criterion_cls = nn.MSELoss()
|
137 |
+
elif cfg.criterion_cls == 'l1':
|
138 |
+
criterion_cls = nn.L1Loss()
|
139 |
+
else:
|
140 |
+
print('No such cls criterion:', cfg.criterion_cls)
|
141 |
+
|
142 |
+
criterion_reg = None
|
143 |
+
if cfg.criterion_reg == 'l1':
|
144 |
+
criterion_reg = nn.L1Loss()
|
145 |
+
elif cfg.criterion_reg == 'l2':
|
146 |
+
criterion_reg = nn.MSELoss()
|
147 |
+
else:
|
148 |
+
print('No such reg criterion:', cfg.criterion_reg)
|
149 |
+
|
150 |
+
points_flip = None
|
151 |
+
if cfg.data_name == 'data_300W':
|
152 |
+
points_flip = [17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 28, 29, 30, 31, 36, 35, 34, 33, 32, 46, 45, 44, 43, 48, 47, 40, 39, 38, 37, 42, 41, 55, 54, 53, 52, 51, 50, 49, 60, 59, 58, 57, 56, 65, 64, 63, 62, 61, 68, 67, 66]
|
153 |
+
points_flip = (np.array(points_flip)-1).tolist()
|
154 |
+
assert len(points_flip) == 68
|
155 |
+
elif cfg.data_name == 'WFLW':
|
156 |
+
points_flip = [32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 46, 45, 44, 43, 42, 50, 49, 48, 47, 37, 36, 35, 34, 33, 41, 40, 39, 38, 51, 52, 53, 54, 59, 58, 57, 56, 55, 72, 71, 70, 69, 68, 75, 74, 73, 64, 63, 62, 61, 60, 67, 66, 65, 82, 81, 80, 79, 78, 77, 76, 87, 86, 85, 84, 83, 92, 91, 90, 89, 88, 95, 94, 93, 97, 96]
|
157 |
+
assert len(points_flip) == 98
|
158 |
+
elif cfg.data_name == 'COFW':
|
159 |
+
points_flip = [2, 1, 4, 3, 7, 8, 5, 6, 10, 9, 12, 11, 15, 16, 13, 14, 18, 17, 20, 19, 21, 22, 24, 23, 25, 26, 27, 28, 29]
|
160 |
+
points_flip = (np.array(points_flip)-1).tolist()
|
161 |
+
assert len(points_flip) == 29
|
162 |
+
elif cfg.data_name == 'AFLW':
|
163 |
+
points_flip = [6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7, 15, 14, 13, 18, 17, 16, 19]
|
164 |
+
points_flip = (np.array(points_flip)-1).tolist()
|
165 |
+
assert len(points_flip) == 19
|
166 |
+
else:
|
167 |
+
print('No such data!')
|
168 |
+
exit(0)
|
169 |
+
|
170 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
171 |
+
std=[0.229, 0.224, 0.225])
|
172 |
+
|
173 |
+
if cfg.pretrained:
|
174 |
+
optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
|
175 |
+
else:
|
176 |
+
optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr, weight_decay=5e-4)
|
177 |
+
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.decay_steps, gamma=0.1)
|
178 |
+
|
179 |
+
labels = get_label(cfg.data_name, 'train.txt')
|
180 |
+
|
181 |
+
if cfg.det_head == 'pip':
|
182 |
+
train_data = data_utils.ImageFolder_pip(os.path.join('data', cfg.data_name, 'images_train'),
|
183 |
+
labels, cfg.input_size, cfg.num_lms,
|
184 |
+
cfg.net_stride, points_flip, meanface_indices,
|
185 |
+
transforms.Compose([
|
186 |
+
transforms.RandomGrayscale(0.2),
|
187 |
+
transforms.ToTensor(),
|
188 |
+
normalize]))
|
189 |
+
else:
|
190 |
+
print('No such head:', cfg.det_head)
|
191 |
+
exit(0)
|
192 |
+
|
193 |
+
train_loader = torch.utils.data.DataLoader(train_data, batch_size=cfg.batch_size, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)
|
194 |
+
|
195 |
+
train_model(cfg.det_head, net, train_loader, criterion_cls, criterion_reg, cfg.cls_loss_weight, cfg.reg_loss_weight, cfg.num_nb, optimizer, cfg.num_epochs, scheduler, save_dir, cfg.save_interval, device)
|
196 |
+
|
third_party/PIPNet/lib/train_gssl.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2, os
|
2 |
+
import sys
|
3 |
+
sys.path.insert(0, '..')
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import logging
|
7 |
+
import importlib
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.optim as optim
|
12 |
+
import torch.utils.data
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torchvision.transforms as transforms
|
15 |
+
import torchvision.datasets as datasets
|
16 |
+
import torchvision.models as models
|
17 |
+
|
18 |
+
from networks_gssl import *
|
19 |
+
import data_utils_gssl
|
20 |
+
from functions_gssl import *
|
21 |
+
|
22 |
+
if not len(sys.argv) == 2:
|
23 |
+
print('Format:')
|
24 |
+
print('python lib/train_gssl.py config_file')
|
25 |
+
exit(0)
|
26 |
+
experiment_name = sys.argv[1].split('/')[-1][:-3]
|
27 |
+
data_name = sys.argv[1].split('/')[-2]
|
28 |
+
config_path = '.experiments.{}.{}'.format(data_name, experiment_name)
|
29 |
+
|
30 |
+
my_config = importlib.import_module(config_path, package='PIPNet')
|
31 |
+
Config = getattr(my_config, 'Config')
|
32 |
+
cfg = Config()
|
33 |
+
cfg.experiment_name = experiment_name
|
34 |
+
cfg.data_name = data_name
|
35 |
+
|
36 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(cfg.gpu_id)
|
37 |
+
|
38 |
+
if not os.path.exists(os.path.join('./snapshots', cfg.data_name)):
|
39 |
+
os.mkdir(os.path.join('./snapshots', cfg.data_name))
|
40 |
+
save_dir = os.path.join('./snapshots', cfg.data_name, cfg.experiment_name)
|
41 |
+
if not os.path.exists(save_dir):
|
42 |
+
os.mkdir(save_dir)
|
43 |
+
|
44 |
+
if not os.path.exists(os.path.join('./logs', cfg.data_name)):
|
45 |
+
os.mkdir(os.path.join('./logs', cfg.data_name))
|
46 |
+
log_dir = os.path.join('./logs', cfg.data_name, cfg.experiment_name)
|
47 |
+
if not os.path.exists(log_dir):
|
48 |
+
os.mkdir(log_dir)
|
49 |
+
|
50 |
+
logging.basicConfig(filename=os.path.join(log_dir, 'train.log'), level=logging.INFO)
|
51 |
+
|
52 |
+
print('###########################################')
|
53 |
+
print('experiment_name:', cfg.experiment_name)
|
54 |
+
print('data_name:', cfg.data_name)
|
55 |
+
print('det_head:', cfg.det_head)
|
56 |
+
print('net_stride:', cfg.net_stride)
|
57 |
+
print('batch_size:', cfg.batch_size)
|
58 |
+
print('init_lr:', cfg.init_lr)
|
59 |
+
print('num_epochs:', cfg.num_epochs)
|
60 |
+
print('decay_steps:', cfg.decay_steps)
|
61 |
+
print('input_size:', cfg.input_size)
|
62 |
+
print('backbone:', cfg.backbone)
|
63 |
+
print('pretrained:', cfg.pretrained)
|
64 |
+
print('criterion_cls:', cfg.criterion_cls)
|
65 |
+
print('criterion_reg:', cfg.criterion_reg)
|
66 |
+
print('cls_loss_weight:', cfg.cls_loss_weight)
|
67 |
+
print('reg_loss_weight:', cfg.reg_loss_weight)
|
68 |
+
print('num_lms:', cfg.num_lms)
|
69 |
+
print('save_interval:', cfg.save_interval)
|
70 |
+
print('num_nb:', cfg.num_nb)
|
71 |
+
print('use_gpu:', cfg.use_gpu)
|
72 |
+
print('gpu_id:', cfg.gpu_id)
|
73 |
+
print('curriculum:', cfg.curriculum)
|
74 |
+
print('###########################################')
|
75 |
+
logging.info('###########################################')
|
76 |
+
logging.info('experiment_name: {}'.format(cfg.experiment_name))
|
77 |
+
logging.info('data_name: {}'.format(cfg.data_name))
|
78 |
+
logging.info('det_head: {}'.format(cfg.det_head))
|
79 |
+
logging.info('net_stride: {}'.format(cfg.net_stride))
|
80 |
+
logging.info('batch_size: {}'.format(cfg.batch_size))
|
81 |
+
logging.info('init_lr: {}'.format(cfg.init_lr))
|
82 |
+
logging.info('num_epochs: {}'.format(cfg.num_epochs))
|
83 |
+
logging.info('decay_steps: {}'.format(cfg.decay_steps))
|
84 |
+
logging.info('input_size: {}'.format(cfg.input_size))
|
85 |
+
logging.info('backbone: {}'.format(cfg.backbone))
|
86 |
+
logging.info('pretrained: {}'.format(cfg.pretrained))
|
87 |
+
logging.info('criterion_cls: {}'.format(cfg.criterion_cls))
|
88 |
+
logging.info('criterion_reg: {}'.format(cfg.criterion_reg))
|
89 |
+
logging.info('cls_loss_weight: {}'.format(cfg.cls_loss_weight))
|
90 |
+
logging.info('reg_loss_weight: {}'.format(cfg.reg_loss_weight))
|
91 |
+
logging.info('num_lms: {}'.format(cfg.num_lms))
|
92 |
+
logging.info('save_interval: {}'.format(cfg.save_interval))
|
93 |
+
logging.info('num_nb: {}'.format(cfg.num_nb))
|
94 |
+
logging.info('use_gpu: {}'.format(cfg.use_gpu))
|
95 |
+
logging.info('gpu_id: {}'.format(cfg.gpu_id))
|
96 |
+
logging.info('###########################################')
|
97 |
+
|
98 |
+
if cfg.curriculum:
|
99 |
+
# self-training with curriculum
|
100 |
+
task_type_list = ['cls3', 'cls2', 'std', 'std', 'std']
|
101 |
+
else:
|
102 |
+
# standard self-training
|
103 |
+
task_type_list = ['std']*3
|
104 |
+
|
105 |
+
meanface_indices, reverse_index1, reverse_index2, max_len = get_meanface(os.path.join('data', cfg.data_name, 'meanface.txt'), cfg.num_nb)
|
106 |
+
|
107 |
+
if cfg.det_head == 'pip':
|
108 |
+
if cfg.backbone == 'resnet18':
|
109 |
+
resnet18 = models.resnet18(pretrained=cfg.pretrained)
|
110 |
+
net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
111 |
+
else:
|
112 |
+
print('No such backbone!')
|
113 |
+
exit(0)
|
114 |
+
else:
|
115 |
+
print('No such head:', cfg.det_head)
|
116 |
+
exit(0)
|
117 |
+
|
118 |
+
if cfg.use_gpu:
|
119 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
120 |
+
else:
|
121 |
+
device = torch.device("cpu")
|
122 |
+
net = net.to(device)
|
123 |
+
|
124 |
+
criterion_cls = None
|
125 |
+
if cfg.criterion_cls == 'l2':
|
126 |
+
criterion_cls = nn.MSELoss(reduction='sum')
|
127 |
+
elif cfg.criterion_cls == 'l1':
|
128 |
+
criterion_cls = nn.L1Loss()
|
129 |
+
else:
|
130 |
+
print('No such cls criterion:', cfg.criterion_cls)
|
131 |
+
|
132 |
+
criterion_reg = None
|
133 |
+
if cfg.criterion_reg == 'l1':
|
134 |
+
criterion_reg = nn.L1Loss(reduction='sum')
|
135 |
+
elif cfg.criterion_reg == 'l2':
|
136 |
+
criterion_reg = nn.MSELoss()
|
137 |
+
else:
|
138 |
+
print('No such reg criterion:', cfg.criterion_reg)
|
139 |
+
|
140 |
+
points_flip = [17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 28, 29, 30, 31, 36, 35, 34, 33, 32, 46, 45, 44, 43, 48, 47, 40, 39, 38, 37, 42, 41, 55, 54, 53, 52, 51, 50, 49, 60, 59, 58, 57, 56, 65, 64, 63, 62, 61, 68, 67, 66]
|
141 |
+
points_flip = (np.array(points_flip)-1).tolist()
|
142 |
+
assert len(points_flip) == 68
|
143 |
+
|
144 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
145 |
+
std=[0.229, 0.224, 0.225])
|
146 |
+
|
147 |
+
optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
|
148 |
+
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.decay_steps, gamma=0.1)
|
149 |
+
|
150 |
+
labels = get_label(cfg.data_name, 'train_300W.txt', 'std')
|
151 |
+
|
152 |
+
train_data = data_utils_gssl.ImageFolder_pip(os.path.join('data', cfg.data_name, 'images_train'),
|
153 |
+
labels, cfg.input_size, cfg.num_lms,
|
154 |
+
cfg.net_stride, points_flip, meanface_indices,
|
155 |
+
transforms.Compose([
|
156 |
+
transforms.RandomGrayscale(0.2),
|
157 |
+
transforms.ToTensor(),
|
158 |
+
normalize]))
|
159 |
+
|
160 |
+
train_loader = torch.utils.data.DataLoader(train_data, batch_size=cfg.batch_size, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)
|
161 |
+
|
162 |
+
train_model(cfg.det_head, net, train_loader, criterion_cls, criterion_reg, cfg.cls_loss_weight, cfg.reg_loss_weight, cfg.num_nb, optimizer, cfg.num_epochs, scheduler, save_dir, cfg.save_interval, device)
|
163 |
+
|
164 |
+
###############
|
165 |
+
# test
|
166 |
+
norm_indices = [36, 45]
|
167 |
+
|
168 |
+
preprocess = transforms.Compose([transforms.Resize((cfg.input_size, cfg.input_size)), transforms.ToTensor(), normalize])
|
169 |
+
test_data_list = ['300W', 'COFW', 'WFLW']
|
170 |
+
for test_data in test_data_list:
|
171 |
+
labels = get_label(cfg.data_name, 'test_'+test_data+'.txt')
|
172 |
+
nmes = []
|
173 |
+
norm = None
|
174 |
+
for label in labels:
|
175 |
+
image_name = label[0]
|
176 |
+
lms_gt = label[1]
|
177 |
+
image_path = os.path.join('data', cfg.data_name, 'images_test_'+test_data, image_name)
|
178 |
+
image = cv2.imread(image_path)
|
179 |
+
image = cv2.resize(image, (cfg.input_size, cfg.input_size))
|
180 |
+
inputs = Image.fromarray(image[:,:,::-1].astype('uint8'), 'RGB')
|
181 |
+
inputs = preprocess(inputs).unsqueeze(0)
|
182 |
+
inputs = inputs.to(device)
|
183 |
+
lms_pred_x, lms_pred_y, lms_pred_nb_x, lms_pred_nb_y, outputs_cls, max_cls = forward_pip(net, inputs, preprocess, cfg.input_size, cfg.net_stride, cfg.num_nb)
|
184 |
+
# inter-ocular
|
185 |
+
norm = np.linalg.norm(lms_gt.reshape(-1, 2)[norm_indices[0]] - lms_gt.reshape(-1, 2)[norm_indices[1]])
|
186 |
+
#############################
|
187 |
+
# merge neighbor predictions
|
188 |
+
lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten().cpu().numpy()
|
189 |
+
tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
190 |
+
tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
191 |
+
tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1,1)
|
192 |
+
tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1,1)
|
193 |
+
lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten().cpu().numpy()
|
194 |
+
#############################
|
195 |
+
nme = compute_nme(lms_pred_merge, lms_gt, norm)
|
196 |
+
nmes.append(nme)
|
197 |
+
|
198 |
+
print('{} nme: {}'.format(test_data, np.mean(nmes)))
|
199 |
+
logging.info('{} nme: {}'.format(test_data, np.mean(nmes)))
|
200 |
+
|
201 |
+
for ti, task_type in enumerate(task_type_list):
|
202 |
+
print('###################################################')
|
203 |
+
print('Iter:', ti, 'task_type:', task_type)
|
204 |
+
###############
|
205 |
+
# estimate
|
206 |
+
if cfg.data_name == 'data_300W_COFW_WFLW':
|
207 |
+
est_data_list = ['COFW', 'WFLW']
|
208 |
+
elif cfg.data_name == 'data_300W_CELEBA':
|
209 |
+
est_data_list = ['CELEBA']
|
210 |
+
else:
|
211 |
+
print('No such data!')
|
212 |
+
exit(0)
|
213 |
+
est_preds = []
|
214 |
+
for est_data in est_data_list:
|
215 |
+
labels = get_label(cfg.data_name, 'train_'+est_data+'.txt')
|
216 |
+
for label in labels:
|
217 |
+
image_name = label[0]
|
218 |
+
#print(image_name)
|
219 |
+
image_path = os.path.join('data', cfg.data_name, 'images_train', image_name)
|
220 |
+
image = cv2.imread(image_path)
|
221 |
+
image = cv2.resize(image, (cfg.input_size, cfg.input_size))
|
222 |
+
inputs = Image.fromarray(image[:,:,::-1].astype('uint8'), 'RGB')
|
223 |
+
inputs = preprocess(inputs).unsqueeze(0)
|
224 |
+
inputs = inputs.to(device)
|
225 |
+
lms_pred_x, lms_pred_y, lms_pred_nb_x, lms_pred_nb_y, outputs_cls, max_cls = forward_pip(net, inputs, preprocess, cfg.input_size, cfg.net_stride, cfg.num_nb)
|
226 |
+
#############################
|
227 |
+
# merge neighbor predictions
|
228 |
+
lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten().cpu().numpy()
|
229 |
+
tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
230 |
+
tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
231 |
+
tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1,1)
|
232 |
+
tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1,1)
|
233 |
+
lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten().cpu().numpy()
|
234 |
+
#############################
|
235 |
+
est_preds.append([image_name, task_type, lms_pred_merge])
|
236 |
+
|
237 |
+
################
|
238 |
+
# GSSL
|
239 |
+
if cfg.det_head == 'pip':
|
240 |
+
if cfg.backbone == 'resnet18':
|
241 |
+
resnet18 = models.resnet18(pretrained=cfg.pretrained)
|
242 |
+
net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
|
243 |
+
else:
|
244 |
+
print('No such backbone!')
|
245 |
+
exit(0)
|
246 |
+
else:
|
247 |
+
print('No such head:', cfg.det_head)
|
248 |
+
exit(0)
|
249 |
+
|
250 |
+
net = net.to(device)
|
251 |
+
optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
|
252 |
+
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.decay_steps, gamma=0.1)
|
253 |
+
labels = get_label(cfg.data_name, 'train_300W.txt', 'std')
|
254 |
+
labels += est_preds
|
255 |
+
|
256 |
+
train_data = data_utils_gssl.ImageFolder_pip(os.path.join('data', cfg.data_name, 'images_train'),
|
257 |
+
labels, cfg.input_size, cfg.num_lms,
|
258 |
+
cfg.net_stride, points_flip, meanface_indices,
|
259 |
+
transforms.Compose([
|
260 |
+
transforms.RandomGrayscale(0.2),
|
261 |
+
transforms.ToTensor(),
|
262 |
+
normalize]))
|
263 |
+
|
264 |
+
train_loader = torch.utils.data.DataLoader(train_data, batch_size=cfg.batch_size, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)
|
265 |
+
|
266 |
+
train_model(cfg.det_head, net, train_loader, criterion_cls, criterion_reg, cfg.cls_loss_weight, cfg.reg_loss_weight, cfg.num_nb, optimizer, cfg.num_epochs, scheduler, save_dir, cfg.save_interval, device)
|
267 |
+
|
268 |
+
###############
|
269 |
+
# test
|
270 |
+
preprocess = transforms.Compose([transforms.Resize((cfg.input_size, cfg.input_size)), transforms.ToTensor(), normalize])
|
271 |
+
test_data_list = ['300W', 'COFW', 'WFLW']
|
272 |
+
for test_data in test_data_list:
|
273 |
+
labels = get_label(cfg.data_name, 'test_'+test_data+'.txt')
|
274 |
+
nmes = []
|
275 |
+
norm = None
|
276 |
+
for label in labels:
|
277 |
+
image_name = label[0]
|
278 |
+
lms_gt = label[1]
|
279 |
+
image_path = os.path.join('data', cfg.data_name, 'images_test_'+test_data, image_name)
|
280 |
+
image = cv2.imread(image_path)
|
281 |
+
image = cv2.resize(image, (cfg.input_size, cfg.input_size))
|
282 |
+
inputs = Image.fromarray(image[:,:,::-1].astype('uint8'), 'RGB')
|
283 |
+
inputs = preprocess(inputs).unsqueeze(0)
|
284 |
+
inputs = inputs.to(device)
|
285 |
+
lms_pred_x, lms_pred_y, lms_pred_nb_x, lms_pred_nb_y, outputs_cls, max_cls = forward_pip(net, inputs, preprocess, cfg.input_size, cfg.net_stride, cfg.num_nb)
|
286 |
+
# inter-ocular
|
287 |
+
norm = np.linalg.norm(lms_gt.reshape(-1, 2)[norm_indices[0]] - lms_gt.reshape(-1, 2)[norm_indices[1]])
|
288 |
+
#############################
|
289 |
+
# merge neighbor predictions
|
290 |
+
lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten().cpu().numpy()
|
291 |
+
tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
292 |
+
tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
|
293 |
+
tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1,1)
|
294 |
+
tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1,1)
|
295 |
+
lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten().cpu().numpy()
|
296 |
+
#############################
|
297 |
+
nme = compute_nme(lms_pred_merge, lms_gt, norm)
|
298 |
+
nmes.append(nme)
|
299 |
+
|
300 |
+
print('{} nme: {}'.format(test_data, np.mean(nmes)))
|
301 |
+
logging.info('{} nme: {}'.format(test_data, np.mean(nmes)))
|
302 |
+
|
303 |
+
|
third_party/PIPNet/requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
scipy
|
3 |
+
Cython
|
third_party/PIPNet/reverse_index.py
ADDED
@@ -0,0 +1,3338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ri1 = [
|
2 |
+
1,
|
3 |
+
2,
|
4 |
+
3,
|
5 |
+
4,
|
6 |
+
5,
|
7 |
+
33,
|
8 |
+
1,
|
9 |
+
2,
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
5,
|
13 |
+
33,
|
14 |
+
1,
|
15 |
+
2,
|
16 |
+
3,
|
17 |
+
4,
|
18 |
+
5,
|
19 |
+
0,
|
20 |
+
2,
|
21 |
+
3,
|
22 |
+
4,
|
23 |
+
5,
|
24 |
+
6,
|
25 |
+
33,
|
26 |
+
0,
|
27 |
+
2,
|
28 |
+
3,
|
29 |
+
4,
|
30 |
+
5,
|
31 |
+
6,
|
32 |
+
33,
|
33 |
+
0,
|
34 |
+
2,
|
35 |
+
3,
|
36 |
+
0,
|
37 |
+
1,
|
38 |
+
3,
|
39 |
+
4,
|
40 |
+
5,
|
41 |
+
6,
|
42 |
+
0,
|
43 |
+
1,
|
44 |
+
3,
|
45 |
+
4,
|
46 |
+
5,
|
47 |
+
6,
|
48 |
+
0,
|
49 |
+
1,
|
50 |
+
3,
|
51 |
+
4,
|
52 |
+
5,
|
53 |
+
0,
|
54 |
+
1,
|
55 |
+
2,
|
56 |
+
4,
|
57 |
+
5,
|
58 |
+
6,
|
59 |
+
7,
|
60 |
+
0,
|
61 |
+
1,
|
62 |
+
2,
|
63 |
+
4,
|
64 |
+
5,
|
65 |
+
6,
|
66 |
+
7,
|
67 |
+
0,
|
68 |
+
1,
|
69 |
+
2,
|
70 |
+
0,
|
71 |
+
1,
|
72 |
+
2,
|
73 |
+
3,
|
74 |
+
5,
|
75 |
+
6,
|
76 |
+
7,
|
77 |
+
8,
|
78 |
+
0,
|
79 |
+
1,
|
80 |
+
2,
|
81 |
+
3,
|
82 |
+
5,
|
83 |
+
6,
|
84 |
+
7,
|
85 |
+
8,
|
86 |
+
0,
|
87 |
+
1,
|
88 |
+
2,
|
89 |
+
3,
|
90 |
+
4,
|
91 |
+
6,
|
92 |
+
7,
|
93 |
+
8,
|
94 |
+
9,
|
95 |
+
1,
|
96 |
+
2,
|
97 |
+
3,
|
98 |
+
4,
|
99 |
+
6,
|
100 |
+
7,
|
101 |
+
8,
|
102 |
+
9,
|
103 |
+
1,
|
104 |
+
2,
|
105 |
+
3,
|
106 |
+
4,
|
107 |
+
5,
|
108 |
+
7,
|
109 |
+
8,
|
110 |
+
9,
|
111 |
+
10,
|
112 |
+
2,
|
113 |
+
3,
|
114 |
+
4,
|
115 |
+
5,
|
116 |
+
7,
|
117 |
+
8,
|
118 |
+
9,
|
119 |
+
10,
|
120 |
+
2,
|
121 |
+
3,
|
122 |
+
4,
|
123 |
+
5,
|
124 |
+
6,
|
125 |
+
8,
|
126 |
+
9,
|
127 |
+
10,
|
128 |
+
3,
|
129 |
+
4,
|
130 |
+
5,
|
131 |
+
6,
|
132 |
+
8,
|
133 |
+
9,
|
134 |
+
10,
|
135 |
+
3,
|
136 |
+
4,
|
137 |
+
5,
|
138 |
+
4,
|
139 |
+
5,
|
140 |
+
6,
|
141 |
+
7,
|
142 |
+
9,
|
143 |
+
10,
|
144 |
+
11,
|
145 |
+
4,
|
146 |
+
5,
|
147 |
+
6,
|
148 |
+
7,
|
149 |
+
9,
|
150 |
+
10,
|
151 |
+
11,
|
152 |
+
4,
|
153 |
+
5,
|
154 |
+
6,
|
155 |
+
4,
|
156 |
+
5,
|
157 |
+
6,
|
158 |
+
7,
|
159 |
+
8,
|
160 |
+
10,
|
161 |
+
11,
|
162 |
+
12,
|
163 |
+
4,
|
164 |
+
5,
|
165 |
+
6,
|
166 |
+
7,
|
167 |
+
8,
|
168 |
+
10,
|
169 |
+
11,
|
170 |
+
12,
|
171 |
+
4,
|
172 |
+
5,
|
173 |
+
6,
|
174 |
+
7,
|
175 |
+
8,
|
176 |
+
9,
|
177 |
+
11,
|
178 |
+
12,
|
179 |
+
13,
|
180 |
+
76,
|
181 |
+
5,
|
182 |
+
6,
|
183 |
+
7,
|
184 |
+
8,
|
185 |
+
9,
|
186 |
+
11,
|
187 |
+
12,
|
188 |
+
13,
|
189 |
+
7,
|
190 |
+
8,
|
191 |
+
9,
|
192 |
+
10,
|
193 |
+
12,
|
194 |
+
13,
|
195 |
+
14,
|
196 |
+
76,
|
197 |
+
88,
|
198 |
+
7,
|
199 |
+
8,
|
200 |
+
9,
|
201 |
+
10,
|
202 |
+
12,
|
203 |
+
13,
|
204 |
+
14,
|
205 |
+
76,
|
206 |
+
8,
|
207 |
+
9,
|
208 |
+
10,
|
209 |
+
11,
|
210 |
+
13,
|
211 |
+
14,
|
212 |
+
15,
|
213 |
+
8,
|
214 |
+
9,
|
215 |
+
10,
|
216 |
+
11,
|
217 |
+
13,
|
218 |
+
14,
|
219 |
+
15,
|
220 |
+
8,
|
221 |
+
9,
|
222 |
+
10,
|
223 |
+
10,
|
224 |
+
11,
|
225 |
+
12,
|
226 |
+
14,
|
227 |
+
15,
|
228 |
+
16,
|
229 |
+
10,
|
230 |
+
11,
|
231 |
+
12,
|
232 |
+
14,
|
233 |
+
15,
|
234 |
+
16,
|
235 |
+
10,
|
236 |
+
11,
|
237 |
+
12,
|
238 |
+
14,
|
239 |
+
15,
|
240 |
+
11,
|
241 |
+
12,
|
242 |
+
13,
|
243 |
+
15,
|
244 |
+
16,
|
245 |
+
17,
|
246 |
+
11,
|
247 |
+
12,
|
248 |
+
13,
|
249 |
+
15,
|
250 |
+
16,
|
251 |
+
17,
|
252 |
+
11,
|
253 |
+
12,
|
254 |
+
13,
|
255 |
+
15,
|
256 |
+
16,
|
257 |
+
12,
|
258 |
+
13,
|
259 |
+
14,
|
260 |
+
16,
|
261 |
+
17,
|
262 |
+
18,
|
263 |
+
12,
|
264 |
+
13,
|
265 |
+
14,
|
266 |
+
16,
|
267 |
+
17,
|
268 |
+
18,
|
269 |
+
12,
|
270 |
+
13,
|
271 |
+
14,
|
272 |
+
16,
|
273 |
+
17,
|
274 |
+
13,
|
275 |
+
14,
|
276 |
+
15,
|
277 |
+
17,
|
278 |
+
18,
|
279 |
+
19,
|
280 |
+
13,
|
281 |
+
14,
|
282 |
+
15,
|
283 |
+
17,
|
284 |
+
18,
|
285 |
+
19,
|
286 |
+
13,
|
287 |
+
14,
|
288 |
+
15,
|
289 |
+
17,
|
290 |
+
18,
|
291 |
+
14,
|
292 |
+
15,
|
293 |
+
16,
|
294 |
+
18,
|
295 |
+
19,
|
296 |
+
20,
|
297 |
+
14,
|
298 |
+
15,
|
299 |
+
16,
|
300 |
+
18,
|
301 |
+
19,
|
302 |
+
20,
|
303 |
+
14,
|
304 |
+
15,
|
305 |
+
16,
|
306 |
+
18,
|
307 |
+
19,
|
308 |
+
15,
|
309 |
+
16,
|
310 |
+
17,
|
311 |
+
19,
|
312 |
+
20,
|
313 |
+
21,
|
314 |
+
15,
|
315 |
+
16,
|
316 |
+
17,
|
317 |
+
19,
|
318 |
+
20,
|
319 |
+
21,
|
320 |
+
15,
|
321 |
+
16,
|
322 |
+
17,
|
323 |
+
19,
|
324 |
+
20,
|
325 |
+
16,
|
326 |
+
17,
|
327 |
+
18,
|
328 |
+
20,
|
329 |
+
21,
|
330 |
+
22,
|
331 |
+
16,
|
332 |
+
17,
|
333 |
+
18,
|
334 |
+
20,
|
335 |
+
21,
|
336 |
+
22,
|
337 |
+
16,
|
338 |
+
17,
|
339 |
+
18,
|
340 |
+
20,
|
341 |
+
21,
|
342 |
+
17,
|
343 |
+
18,
|
344 |
+
19,
|
345 |
+
21,
|
346 |
+
22,
|
347 |
+
23,
|
348 |
+
24,
|
349 |
+
17,
|
350 |
+
18,
|
351 |
+
19,
|
352 |
+
21,
|
353 |
+
22,
|
354 |
+
23,
|
355 |
+
24,
|
356 |
+
17,
|
357 |
+
18,
|
358 |
+
19,
|
359 |
+
18,
|
360 |
+
19,
|
361 |
+
20,
|
362 |
+
22,
|
363 |
+
23,
|
364 |
+
24,
|
365 |
+
25,
|
366 |
+
82,
|
367 |
+
18,
|
368 |
+
19,
|
369 |
+
20,
|
370 |
+
22,
|
371 |
+
23,
|
372 |
+
24,
|
373 |
+
25,
|
374 |
+
82,
|
375 |
+
18,
|
376 |
+
19,
|
377 |
+
20,
|
378 |
+
21,
|
379 |
+
23,
|
380 |
+
24,
|
381 |
+
25,
|
382 |
+
26,
|
383 |
+
27,
|
384 |
+
19,
|
385 |
+
20,
|
386 |
+
21,
|
387 |
+
23,
|
388 |
+
24,
|
389 |
+
25,
|
390 |
+
26,
|
391 |
+
27,
|
392 |
+
19,
|
393 |
+
20,
|
394 |
+
21,
|
395 |
+
22,
|
396 |
+
24,
|
397 |
+
25,
|
398 |
+
26,
|
399 |
+
27,
|
400 |
+
28,
|
401 |
+
20,
|
402 |
+
21,
|
403 |
+
22,
|
404 |
+
24,
|
405 |
+
25,
|
406 |
+
26,
|
407 |
+
27,
|
408 |
+
28,
|
409 |
+
20,
|
410 |
+
21,
|
411 |
+
22,
|
412 |
+
23,
|
413 |
+
25,
|
414 |
+
26,
|
415 |
+
27,
|
416 |
+
28,
|
417 |
+
21,
|
418 |
+
22,
|
419 |
+
23,
|
420 |
+
25,
|
421 |
+
26,
|
422 |
+
27,
|
423 |
+
28,
|
424 |
+
21,
|
425 |
+
22,
|
426 |
+
23,
|
427 |
+
21,
|
428 |
+
22,
|
429 |
+
23,
|
430 |
+
24,
|
431 |
+
26,
|
432 |
+
27,
|
433 |
+
28,
|
434 |
+
29,
|
435 |
+
21,
|
436 |
+
22,
|
437 |
+
23,
|
438 |
+
24,
|
439 |
+
26,
|
440 |
+
27,
|
441 |
+
28,
|
442 |
+
29,
|
443 |
+
21,
|
444 |
+
22,
|
445 |
+
23,
|
446 |
+
24,
|
447 |
+
25,
|
448 |
+
27,
|
449 |
+
28,
|
450 |
+
29,
|
451 |
+
30,
|
452 |
+
22,
|
453 |
+
23,
|
454 |
+
24,
|
455 |
+
25,
|
456 |
+
27,
|
457 |
+
28,
|
458 |
+
29,
|
459 |
+
30,
|
460 |
+
22,
|
461 |
+
23,
|
462 |
+
24,
|
463 |
+
25,
|
464 |
+
26,
|
465 |
+
28,
|
466 |
+
29,
|
467 |
+
30,
|
468 |
+
31,
|
469 |
+
23,
|
470 |
+
24,
|
471 |
+
25,
|
472 |
+
26,
|
473 |
+
28,
|
474 |
+
29,
|
475 |
+
30,
|
476 |
+
31,
|
477 |
+
23,
|
478 |
+
24,
|
479 |
+
25,
|
480 |
+
26,
|
481 |
+
27,
|
482 |
+
29,
|
483 |
+
30,
|
484 |
+
31,
|
485 |
+
32,
|
486 |
+
24,
|
487 |
+
25,
|
488 |
+
26,
|
489 |
+
27,
|
490 |
+
29,
|
491 |
+
30,
|
492 |
+
31,
|
493 |
+
32,
|
494 |
+
24,
|
495 |
+
25,
|
496 |
+
26,
|
497 |
+
27,
|
498 |
+
28,
|
499 |
+
30,
|
500 |
+
31,
|
501 |
+
32,
|
502 |
+
25,
|
503 |
+
26,
|
504 |
+
27,
|
505 |
+
28,
|
506 |
+
30,
|
507 |
+
31,
|
508 |
+
32,
|
509 |
+
25,
|
510 |
+
26,
|
511 |
+
27,
|
512 |
+
26,
|
513 |
+
27,
|
514 |
+
28,
|
515 |
+
29,
|
516 |
+
31,
|
517 |
+
32,
|
518 |
+
26,
|
519 |
+
27,
|
520 |
+
28,
|
521 |
+
29,
|
522 |
+
31,
|
523 |
+
32,
|
524 |
+
26,
|
525 |
+
27,
|
526 |
+
28,
|
527 |
+
29,
|
528 |
+
31,
|
529 |
+
26,
|
530 |
+
27,
|
531 |
+
28,
|
532 |
+
29,
|
533 |
+
30,
|
534 |
+
32,
|
535 |
+
46,
|
536 |
+
26,
|
537 |
+
27,
|
538 |
+
28,
|
539 |
+
29,
|
540 |
+
30,
|
541 |
+
32,
|
542 |
+
46,
|
543 |
+
26,
|
544 |
+
27,
|
545 |
+
28,
|
546 |
+
27,
|
547 |
+
28,
|
548 |
+
29,
|
549 |
+
30,
|
550 |
+
31,
|
551 |
+
46,
|
552 |
+
27,
|
553 |
+
28,
|
554 |
+
29,
|
555 |
+
30,
|
556 |
+
31,
|
557 |
+
46,
|
558 |
+
27,
|
559 |
+
28,
|
560 |
+
29,
|
561 |
+
30,
|
562 |
+
31,
|
563 |
+
0,
|
564 |
+
1,
|
565 |
+
2,
|
566 |
+
3,
|
567 |
+
34,
|
568 |
+
41,
|
569 |
+
60,
|
570 |
+
0,
|
571 |
+
1,
|
572 |
+
2,
|
573 |
+
3,
|
574 |
+
34,
|
575 |
+
41,
|
576 |
+
60,
|
577 |
+
0,
|
578 |
+
1,
|
579 |
+
2,
|
580 |
+
0,
|
581 |
+
33,
|
582 |
+
35,
|
583 |
+
40,
|
584 |
+
41,
|
585 |
+
60,
|
586 |
+
0,
|
587 |
+
33,
|
588 |
+
35,
|
589 |
+
40,
|
590 |
+
41,
|
591 |
+
60,
|
592 |
+
0,
|
593 |
+
33,
|
594 |
+
35,
|
595 |
+
40,
|
596 |
+
41,
|
597 |
+
33,
|
598 |
+
34,
|
599 |
+
36,
|
600 |
+
37,
|
601 |
+
39,
|
602 |
+
40,
|
603 |
+
41,
|
604 |
+
60,
|
605 |
+
61,
|
606 |
+
62,
|
607 |
+
33,
|
608 |
+
34,
|
609 |
+
36,
|
610 |
+
37,
|
611 |
+
39,
|
612 |
+
40,
|
613 |
+
41,
|
614 |
+
34,
|
615 |
+
35,
|
616 |
+
37,
|
617 |
+
38,
|
618 |
+
39,
|
619 |
+
40,
|
620 |
+
63,
|
621 |
+
64,
|
622 |
+
34,
|
623 |
+
35,
|
624 |
+
37,
|
625 |
+
38,
|
626 |
+
39,
|
627 |
+
40,
|
628 |
+
63,
|
629 |
+
64,
|
630 |
+
34,
|
631 |
+
36,
|
632 |
+
38,
|
633 |
+
39,
|
634 |
+
51,
|
635 |
+
64,
|
636 |
+
36,
|
637 |
+
38,
|
638 |
+
39,
|
639 |
+
51,
|
640 |
+
64,
|
641 |
+
36,
|
642 |
+
38,
|
643 |
+
39,
|
644 |
+
51,
|
645 |
+
64,
|
646 |
+
36,
|
647 |
+
38,
|
648 |
+
36,
|
649 |
+
37,
|
650 |
+
39,
|
651 |
+
51,
|
652 |
+
52,
|
653 |
+
63,
|
654 |
+
64,
|
655 |
+
65,
|
656 |
+
36,
|
657 |
+
37,
|
658 |
+
39,
|
659 |
+
51,
|
660 |
+
52,
|
661 |
+
63,
|
662 |
+
64,
|
663 |
+
65,
|
664 |
+
36,
|
665 |
+
35,
|
666 |
+
36,
|
667 |
+
37,
|
668 |
+
38,
|
669 |
+
40,
|
670 |
+
62,
|
671 |
+
63,
|
672 |
+
64,
|
673 |
+
65,
|
674 |
+
66,
|
675 |
+
67,
|
676 |
+
96,
|
677 |
+
35,
|
678 |
+
36,
|
679 |
+
37,
|
680 |
+
38,
|
681 |
+
40,
|
682 |
+
33,
|
683 |
+
34,
|
684 |
+
35,
|
685 |
+
36,
|
686 |
+
37,
|
687 |
+
38,
|
688 |
+
39,
|
689 |
+
41,
|
690 |
+
60,
|
691 |
+
61,
|
692 |
+
62,
|
693 |
+
63,
|
694 |
+
65,
|
695 |
+
66,
|
696 |
+
67,
|
697 |
+
96,
|
698 |
+
33,
|
699 |
+
0,
|
700 |
+
1,
|
701 |
+
2,
|
702 |
+
33,
|
703 |
+
34,
|
704 |
+
35,
|
705 |
+
40,
|
706 |
+
60,
|
707 |
+
61,
|
708 |
+
67,
|
709 |
+
0,
|
710 |
+
1,
|
711 |
+
2,
|
712 |
+
33,
|
713 |
+
34,
|
714 |
+
35,
|
715 |
+
40,
|
716 |
+
43,
|
717 |
+
49,
|
718 |
+
50,
|
719 |
+
51,
|
720 |
+
68,
|
721 |
+
43,
|
722 |
+
49,
|
723 |
+
50,
|
724 |
+
51,
|
725 |
+
68,
|
726 |
+
43,
|
727 |
+
49,
|
728 |
+
50,
|
729 |
+
51,
|
730 |
+
68,
|
731 |
+
43,
|
732 |
+
49,
|
733 |
+
42,
|
734 |
+
44,
|
735 |
+
45,
|
736 |
+
48,
|
737 |
+
49,
|
738 |
+
50,
|
739 |
+
68,
|
740 |
+
69,
|
741 |
+
42,
|
742 |
+
44,
|
743 |
+
45,
|
744 |
+
48,
|
745 |
+
49,
|
746 |
+
50,
|
747 |
+
68,
|
748 |
+
69,
|
749 |
+
42,
|
750 |
+
42,
|
751 |
+
43,
|
752 |
+
45,
|
753 |
+
46,
|
754 |
+
47,
|
755 |
+
48,
|
756 |
+
49,
|
757 |
+
70,
|
758 |
+
42,
|
759 |
+
43,
|
760 |
+
45,
|
761 |
+
46,
|
762 |
+
47,
|
763 |
+
48,
|
764 |
+
49,
|
765 |
+
70,
|
766 |
+
42,
|
767 |
+
32,
|
768 |
+
44,
|
769 |
+
46,
|
770 |
+
47,
|
771 |
+
48,
|
772 |
+
71,
|
773 |
+
72,
|
774 |
+
73,
|
775 |
+
32,
|
776 |
+
44,
|
777 |
+
46,
|
778 |
+
47,
|
779 |
+
48,
|
780 |
+
71,
|
781 |
+
72,
|
782 |
+
73,
|
783 |
+
32,
|
784 |
+
29,
|
785 |
+
30,
|
786 |
+
31,
|
787 |
+
32,
|
788 |
+
45,
|
789 |
+
47,
|
790 |
+
72,
|
791 |
+
29,
|
792 |
+
30,
|
793 |
+
31,
|
794 |
+
32,
|
795 |
+
45,
|
796 |
+
47,
|
797 |
+
72,
|
798 |
+
29,
|
799 |
+
30,
|
800 |
+
31,
|
801 |
+
30,
|
802 |
+
31,
|
803 |
+
32,
|
804 |
+
44,
|
805 |
+
45,
|
806 |
+
46,
|
807 |
+
48,
|
808 |
+
71,
|
809 |
+
72,
|
810 |
+
73,
|
811 |
+
30,
|
812 |
+
31,
|
813 |
+
32,
|
814 |
+
44,
|
815 |
+
45,
|
816 |
+
46,
|
817 |
+
48,
|
818 |
+
42,
|
819 |
+
43,
|
820 |
+
44,
|
821 |
+
45,
|
822 |
+
46,
|
823 |
+
47,
|
824 |
+
49,
|
825 |
+
50,
|
826 |
+
69,
|
827 |
+
70,
|
828 |
+
71,
|
829 |
+
72,
|
830 |
+
73,
|
831 |
+
74,
|
832 |
+
75,
|
833 |
+
97,
|
834 |
+
42,
|
835 |
+
42,
|
836 |
+
43,
|
837 |
+
44,
|
838 |
+
48,
|
839 |
+
50,
|
840 |
+
68,
|
841 |
+
69,
|
842 |
+
70,
|
843 |
+
74,
|
844 |
+
75,
|
845 |
+
97,
|
846 |
+
42,
|
847 |
+
43,
|
848 |
+
44,
|
849 |
+
48,
|
850 |
+
50,
|
851 |
+
68,
|
852 |
+
42,
|
853 |
+
43,
|
854 |
+
49,
|
855 |
+
51,
|
856 |
+
52,
|
857 |
+
68,
|
858 |
+
69,
|
859 |
+
75,
|
860 |
+
42,
|
861 |
+
43,
|
862 |
+
49,
|
863 |
+
51,
|
864 |
+
52,
|
865 |
+
68,
|
866 |
+
69,
|
867 |
+
75,
|
868 |
+
42,
|
869 |
+
37,
|
870 |
+
38,
|
871 |
+
42,
|
872 |
+
50,
|
873 |
+
52,
|
874 |
+
53,
|
875 |
+
64,
|
876 |
+
68,
|
877 |
+
37,
|
878 |
+
38,
|
879 |
+
42,
|
880 |
+
50,
|
881 |
+
52,
|
882 |
+
53,
|
883 |
+
64,
|
884 |
+
68,
|
885 |
+
37,
|
886 |
+
51,
|
887 |
+
53,
|
888 |
+
54,
|
889 |
+
51,
|
890 |
+
53,
|
891 |
+
54,
|
892 |
+
51,
|
893 |
+
53,
|
894 |
+
54,
|
895 |
+
51,
|
896 |
+
53,
|
897 |
+
54,
|
898 |
+
51,
|
899 |
+
53,
|
900 |
+
54,
|
901 |
+
51,
|
902 |
+
53,
|
903 |
+
51,
|
904 |
+
52,
|
905 |
+
54,
|
906 |
+
55,
|
907 |
+
56,
|
908 |
+
57,
|
909 |
+
59,
|
910 |
+
51,
|
911 |
+
52,
|
912 |
+
54,
|
913 |
+
55,
|
914 |
+
56,
|
915 |
+
57,
|
916 |
+
59,
|
917 |
+
51,
|
918 |
+
52,
|
919 |
+
54,
|
920 |
+
52,
|
921 |
+
53,
|
922 |
+
55,
|
923 |
+
56,
|
924 |
+
57,
|
925 |
+
58,
|
926 |
+
59,
|
927 |
+
52,
|
928 |
+
53,
|
929 |
+
55,
|
930 |
+
56,
|
931 |
+
57,
|
932 |
+
58,
|
933 |
+
59,
|
934 |
+
52,
|
935 |
+
53,
|
936 |
+
55,
|
937 |
+
53,
|
938 |
+
54,
|
939 |
+
56,
|
940 |
+
57,
|
941 |
+
76,
|
942 |
+
77,
|
943 |
+
78,
|
944 |
+
88,
|
945 |
+
53,
|
946 |
+
54,
|
947 |
+
56,
|
948 |
+
57,
|
949 |
+
76,
|
950 |
+
77,
|
951 |
+
78,
|
952 |
+
88,
|
953 |
+
53,
|
954 |
+
53,
|
955 |
+
54,
|
956 |
+
55,
|
957 |
+
57,
|
958 |
+
58,
|
959 |
+
77,
|
960 |
+
78,
|
961 |
+
79,
|
962 |
+
88,
|
963 |
+
53,
|
964 |
+
54,
|
965 |
+
55,
|
966 |
+
57,
|
967 |
+
58,
|
968 |
+
77,
|
969 |
+
78,
|
970 |
+
79,
|
971 |
+
53,
|
972 |
+
54,
|
973 |
+
55,
|
974 |
+
56,
|
975 |
+
58,
|
976 |
+
59,
|
977 |
+
78,
|
978 |
+
79,
|
979 |
+
80,
|
980 |
+
90,
|
981 |
+
53,
|
982 |
+
54,
|
983 |
+
55,
|
984 |
+
56,
|
985 |
+
58,
|
986 |
+
59,
|
987 |
+
78,
|
988 |
+
53,
|
989 |
+
54,
|
990 |
+
56,
|
991 |
+
57,
|
992 |
+
59,
|
993 |
+
79,
|
994 |
+
80,
|
995 |
+
81,
|
996 |
+
82,
|
997 |
+
92,
|
998 |
+
53,
|
999 |
+
54,
|
1000 |
+
56,
|
1001 |
+
57,
|
1002 |
+
59,
|
1003 |
+
79,
|
1004 |
+
80,
|
1005 |
+
53,
|
1006 |
+
54,
|
1007 |
+
57,
|
1008 |
+
58,
|
1009 |
+
80,
|
1010 |
+
81,
|
1011 |
+
82,
|
1012 |
+
92,
|
1013 |
+
53,
|
1014 |
+
54,
|
1015 |
+
57,
|
1016 |
+
58,
|
1017 |
+
80,
|
1018 |
+
81,
|
1019 |
+
82,
|
1020 |
+
92,
|
1021 |
+
53,
|
1022 |
+
0,
|
1023 |
+
1,
|
1024 |
+
2,
|
1025 |
+
3,
|
1026 |
+
4,
|
1027 |
+
33,
|
1028 |
+
34,
|
1029 |
+
41,
|
1030 |
+
61,
|
1031 |
+
62,
|
1032 |
+
66,
|
1033 |
+
67,
|
1034 |
+
96,
|
1035 |
+
0,
|
1036 |
+
1,
|
1037 |
+
2,
|
1038 |
+
3,
|
1039 |
+
0,
|
1040 |
+
1,
|
1041 |
+
33,
|
1042 |
+
34,
|
1043 |
+
35,
|
1044 |
+
40,
|
1045 |
+
41,
|
1046 |
+
60,
|
1047 |
+
62,
|
1048 |
+
63,
|
1049 |
+
65,
|
1050 |
+
66,
|
1051 |
+
67,
|
1052 |
+
96,
|
1053 |
+
0,
|
1054 |
+
1,
|
1055 |
+
33,
|
1056 |
+
33,
|
1057 |
+
34,
|
1058 |
+
35,
|
1059 |
+
36,
|
1060 |
+
37,
|
1061 |
+
38,
|
1062 |
+
39,
|
1063 |
+
40,
|
1064 |
+
41,
|
1065 |
+
60,
|
1066 |
+
61,
|
1067 |
+
63,
|
1068 |
+
64,
|
1069 |
+
65,
|
1070 |
+
66,
|
1071 |
+
67,
|
1072 |
+
96,
|
1073 |
+
35,
|
1074 |
+
36,
|
1075 |
+
37,
|
1076 |
+
38,
|
1077 |
+
39,
|
1078 |
+
40,
|
1079 |
+
51,
|
1080 |
+
52,
|
1081 |
+
61,
|
1082 |
+
62,
|
1083 |
+
64,
|
1084 |
+
65,
|
1085 |
+
66,
|
1086 |
+
67,
|
1087 |
+
96,
|
1088 |
+
35,
|
1089 |
+
36,
|
1090 |
+
36,
|
1091 |
+
37,
|
1092 |
+
38,
|
1093 |
+
39,
|
1094 |
+
51,
|
1095 |
+
52,
|
1096 |
+
53,
|
1097 |
+
63,
|
1098 |
+
65,
|
1099 |
+
66,
|
1100 |
+
96,
|
1101 |
+
36,
|
1102 |
+
37,
|
1103 |
+
38,
|
1104 |
+
39,
|
1105 |
+
51,
|
1106 |
+
52,
|
1107 |
+
36,
|
1108 |
+
37,
|
1109 |
+
38,
|
1110 |
+
39,
|
1111 |
+
52,
|
1112 |
+
61,
|
1113 |
+
62,
|
1114 |
+
63,
|
1115 |
+
64,
|
1116 |
+
66,
|
1117 |
+
67,
|
1118 |
+
96,
|
1119 |
+
36,
|
1120 |
+
37,
|
1121 |
+
38,
|
1122 |
+
39,
|
1123 |
+
52,
|
1124 |
+
41,
|
1125 |
+
60,
|
1126 |
+
61,
|
1127 |
+
62,
|
1128 |
+
63,
|
1129 |
+
64,
|
1130 |
+
65,
|
1131 |
+
67,
|
1132 |
+
96,
|
1133 |
+
41,
|
1134 |
+
60,
|
1135 |
+
61,
|
1136 |
+
62,
|
1137 |
+
63,
|
1138 |
+
64,
|
1139 |
+
65,
|
1140 |
+
67,
|
1141 |
+
0,
|
1142 |
+
1,
|
1143 |
+
2,
|
1144 |
+
3,
|
1145 |
+
33,
|
1146 |
+
34,
|
1147 |
+
35,
|
1148 |
+
40,
|
1149 |
+
41,
|
1150 |
+
60,
|
1151 |
+
61,
|
1152 |
+
62,
|
1153 |
+
65,
|
1154 |
+
66,
|
1155 |
+
96,
|
1156 |
+
0,
|
1157 |
+
1,
|
1158 |
+
42,
|
1159 |
+
43,
|
1160 |
+
49,
|
1161 |
+
50,
|
1162 |
+
51,
|
1163 |
+
52,
|
1164 |
+
53,
|
1165 |
+
69,
|
1166 |
+
74,
|
1167 |
+
75,
|
1168 |
+
97,
|
1169 |
+
42,
|
1170 |
+
43,
|
1171 |
+
49,
|
1172 |
+
50,
|
1173 |
+
51,
|
1174 |
+
52,
|
1175 |
+
42,
|
1176 |
+
43,
|
1177 |
+
44,
|
1178 |
+
48,
|
1179 |
+
49,
|
1180 |
+
50,
|
1181 |
+
51,
|
1182 |
+
68,
|
1183 |
+
70,
|
1184 |
+
71,
|
1185 |
+
73,
|
1186 |
+
74,
|
1187 |
+
75,
|
1188 |
+
97,
|
1189 |
+
42,
|
1190 |
+
43,
|
1191 |
+
44,
|
1192 |
+
42,
|
1193 |
+
43,
|
1194 |
+
44,
|
1195 |
+
45,
|
1196 |
+
46,
|
1197 |
+
47,
|
1198 |
+
48,
|
1199 |
+
49,
|
1200 |
+
50,
|
1201 |
+
68,
|
1202 |
+
69,
|
1203 |
+
71,
|
1204 |
+
72,
|
1205 |
+
73,
|
1206 |
+
74,
|
1207 |
+
75,
|
1208 |
+
97,
|
1209 |
+
31,
|
1210 |
+
32,
|
1211 |
+
44,
|
1212 |
+
45,
|
1213 |
+
46,
|
1214 |
+
47,
|
1215 |
+
48,
|
1216 |
+
69,
|
1217 |
+
70,
|
1218 |
+
72,
|
1219 |
+
73,
|
1220 |
+
74,
|
1221 |
+
75,
|
1222 |
+
97,
|
1223 |
+
31,
|
1224 |
+
32,
|
1225 |
+
44,
|
1226 |
+
28,
|
1227 |
+
29,
|
1228 |
+
30,
|
1229 |
+
31,
|
1230 |
+
32,
|
1231 |
+
45,
|
1232 |
+
46,
|
1233 |
+
47,
|
1234 |
+
70,
|
1235 |
+
71,
|
1236 |
+
73,
|
1237 |
+
74,
|
1238 |
+
97,
|
1239 |
+
28,
|
1240 |
+
29,
|
1241 |
+
30,
|
1242 |
+
31,
|
1243 |
+
29,
|
1244 |
+
30,
|
1245 |
+
31,
|
1246 |
+
32,
|
1247 |
+
44,
|
1248 |
+
45,
|
1249 |
+
46,
|
1250 |
+
47,
|
1251 |
+
48,
|
1252 |
+
70,
|
1253 |
+
71,
|
1254 |
+
72,
|
1255 |
+
74,
|
1256 |
+
75,
|
1257 |
+
97,
|
1258 |
+
29,
|
1259 |
+
30,
|
1260 |
+
47,
|
1261 |
+
68,
|
1262 |
+
69,
|
1263 |
+
70,
|
1264 |
+
71,
|
1265 |
+
72,
|
1266 |
+
73,
|
1267 |
+
75,
|
1268 |
+
97,
|
1269 |
+
47,
|
1270 |
+
68,
|
1271 |
+
69,
|
1272 |
+
70,
|
1273 |
+
71,
|
1274 |
+
72,
|
1275 |
+
73,
|
1276 |
+
75,
|
1277 |
+
42,
|
1278 |
+
43,
|
1279 |
+
49,
|
1280 |
+
50,
|
1281 |
+
52,
|
1282 |
+
68,
|
1283 |
+
69,
|
1284 |
+
70,
|
1285 |
+
71,
|
1286 |
+
72,
|
1287 |
+
73,
|
1288 |
+
74,
|
1289 |
+
97,
|
1290 |
+
42,
|
1291 |
+
43,
|
1292 |
+
49,
|
1293 |
+
50,
|
1294 |
+
6,
|
1295 |
+
7,
|
1296 |
+
8,
|
1297 |
+
9,
|
1298 |
+
10,
|
1299 |
+
11,
|
1300 |
+
12,
|
1301 |
+
55,
|
1302 |
+
77,
|
1303 |
+
87,
|
1304 |
+
88,
|
1305 |
+
89,
|
1306 |
+
95,
|
1307 |
+
6,
|
1308 |
+
7,
|
1309 |
+
8,
|
1310 |
+
9,
|
1311 |
+
55,
|
1312 |
+
56,
|
1313 |
+
76,
|
1314 |
+
78,
|
1315 |
+
86,
|
1316 |
+
87,
|
1317 |
+
88,
|
1318 |
+
89,
|
1319 |
+
95,
|
1320 |
+
55,
|
1321 |
+
56,
|
1322 |
+
76,
|
1323 |
+
78,
|
1324 |
+
86,
|
1325 |
+
87,
|
1326 |
+
88,
|
1327 |
+
89,
|
1328 |
+
54,
|
1329 |
+
55,
|
1330 |
+
56,
|
1331 |
+
57,
|
1332 |
+
58,
|
1333 |
+
76,
|
1334 |
+
77,
|
1335 |
+
79,
|
1336 |
+
80,
|
1337 |
+
85,
|
1338 |
+
86,
|
1339 |
+
87,
|
1340 |
+
88,
|
1341 |
+
89,
|
1342 |
+
90,
|
1343 |
+
94,
|
1344 |
+
95,
|
1345 |
+
54,
|
1346 |
+
55,
|
1347 |
+
56,
|
1348 |
+
57,
|
1349 |
+
58,
|
1350 |
+
59,
|
1351 |
+
77,
|
1352 |
+
78,
|
1353 |
+
80,
|
1354 |
+
81,
|
1355 |
+
84,
|
1356 |
+
85,
|
1357 |
+
86,
|
1358 |
+
89,
|
1359 |
+
90,
|
1360 |
+
91,
|
1361 |
+
94,
|
1362 |
+
54,
|
1363 |
+
57,
|
1364 |
+
58,
|
1365 |
+
59,
|
1366 |
+
78,
|
1367 |
+
79,
|
1368 |
+
81,
|
1369 |
+
82,
|
1370 |
+
83,
|
1371 |
+
84,
|
1372 |
+
85,
|
1373 |
+
90,
|
1374 |
+
91,
|
1375 |
+
92,
|
1376 |
+
93,
|
1377 |
+
94,
|
1378 |
+
54,
|
1379 |
+
58,
|
1380 |
+
59,
|
1381 |
+
80,
|
1382 |
+
82,
|
1383 |
+
83,
|
1384 |
+
84,
|
1385 |
+
91,
|
1386 |
+
92,
|
1387 |
+
93,
|
1388 |
+
58,
|
1389 |
+
59,
|
1390 |
+
80,
|
1391 |
+
82,
|
1392 |
+
83,
|
1393 |
+
84,
|
1394 |
+
91,
|
1395 |
+
92,
|
1396 |
+
20,
|
1397 |
+
21,
|
1398 |
+
22,
|
1399 |
+
23,
|
1400 |
+
24,
|
1401 |
+
25,
|
1402 |
+
26,
|
1403 |
+
59,
|
1404 |
+
81,
|
1405 |
+
83,
|
1406 |
+
91,
|
1407 |
+
92,
|
1408 |
+
93,
|
1409 |
+
20,
|
1410 |
+
21,
|
1411 |
+
22,
|
1412 |
+
23,
|
1413 |
+
17,
|
1414 |
+
18,
|
1415 |
+
19,
|
1416 |
+
20,
|
1417 |
+
21,
|
1418 |
+
22,
|
1419 |
+
23,
|
1420 |
+
81,
|
1421 |
+
82,
|
1422 |
+
84,
|
1423 |
+
91,
|
1424 |
+
92,
|
1425 |
+
93,
|
1426 |
+
17,
|
1427 |
+
18,
|
1428 |
+
19,
|
1429 |
+
20,
|
1430 |
+
16,
|
1431 |
+
17,
|
1432 |
+
18,
|
1433 |
+
19,
|
1434 |
+
20,
|
1435 |
+
81,
|
1436 |
+
82,
|
1437 |
+
83,
|
1438 |
+
85,
|
1439 |
+
91,
|
1440 |
+
92,
|
1441 |
+
93,
|
1442 |
+
94,
|
1443 |
+
16,
|
1444 |
+
17,
|
1445 |
+
18,
|
1446 |
+
19,
|
1447 |
+
14,
|
1448 |
+
15,
|
1449 |
+
16,
|
1450 |
+
17,
|
1451 |
+
18,
|
1452 |
+
83,
|
1453 |
+
84,
|
1454 |
+
86,
|
1455 |
+
87,
|
1456 |
+
90,
|
1457 |
+
93,
|
1458 |
+
94,
|
1459 |
+
95,
|
1460 |
+
14,
|
1461 |
+
15,
|
1462 |
+
16,
|
1463 |
+
17,
|
1464 |
+
11,
|
1465 |
+
12,
|
1466 |
+
13,
|
1467 |
+
14,
|
1468 |
+
15,
|
1469 |
+
16,
|
1470 |
+
76,
|
1471 |
+
77,
|
1472 |
+
85,
|
1473 |
+
87,
|
1474 |
+
88,
|
1475 |
+
89,
|
1476 |
+
94,
|
1477 |
+
95,
|
1478 |
+
11,
|
1479 |
+
12,
|
1480 |
+
13,
|
1481 |
+
9,
|
1482 |
+
10,
|
1483 |
+
11,
|
1484 |
+
12,
|
1485 |
+
13,
|
1486 |
+
14,
|
1487 |
+
76,
|
1488 |
+
77,
|
1489 |
+
86,
|
1490 |
+
88,
|
1491 |
+
89,
|
1492 |
+
95,
|
1493 |
+
9,
|
1494 |
+
10,
|
1495 |
+
11,
|
1496 |
+
12,
|
1497 |
+
13,
|
1498 |
+
7,
|
1499 |
+
8,
|
1500 |
+
9,
|
1501 |
+
10,
|
1502 |
+
11,
|
1503 |
+
12,
|
1504 |
+
13,
|
1505 |
+
55,
|
1506 |
+
76,
|
1507 |
+
77,
|
1508 |
+
86,
|
1509 |
+
87,
|
1510 |
+
89,
|
1511 |
+
95,
|
1512 |
+
7,
|
1513 |
+
8,
|
1514 |
+
9,
|
1515 |
+
55,
|
1516 |
+
56,
|
1517 |
+
76,
|
1518 |
+
77,
|
1519 |
+
78,
|
1520 |
+
79,
|
1521 |
+
86,
|
1522 |
+
87,
|
1523 |
+
88,
|
1524 |
+
90,
|
1525 |
+
95,
|
1526 |
+
55,
|
1527 |
+
56,
|
1528 |
+
76,
|
1529 |
+
77,
|
1530 |
+
78,
|
1531 |
+
79,
|
1532 |
+
56,
|
1533 |
+
57,
|
1534 |
+
58,
|
1535 |
+
78,
|
1536 |
+
79,
|
1537 |
+
80,
|
1538 |
+
83,
|
1539 |
+
84,
|
1540 |
+
85,
|
1541 |
+
86,
|
1542 |
+
87,
|
1543 |
+
89,
|
1544 |
+
91,
|
1545 |
+
92,
|
1546 |
+
93,
|
1547 |
+
94,
|
1548 |
+
95,
|
1549 |
+
58,
|
1550 |
+
59,
|
1551 |
+
79,
|
1552 |
+
80,
|
1553 |
+
81,
|
1554 |
+
82,
|
1555 |
+
83,
|
1556 |
+
84,
|
1557 |
+
85,
|
1558 |
+
90,
|
1559 |
+
92,
|
1560 |
+
93,
|
1561 |
+
94,
|
1562 |
+
58,
|
1563 |
+
59,
|
1564 |
+
79,
|
1565 |
+
80,
|
1566 |
+
19,
|
1567 |
+
20,
|
1568 |
+
21,
|
1569 |
+
22,
|
1570 |
+
23,
|
1571 |
+
24,
|
1572 |
+
25,
|
1573 |
+
59,
|
1574 |
+
81,
|
1575 |
+
82,
|
1576 |
+
83,
|
1577 |
+
84,
|
1578 |
+
91,
|
1579 |
+
93,
|
1580 |
+
19,
|
1581 |
+
20,
|
1582 |
+
21,
|
1583 |
+
18,
|
1584 |
+
19,
|
1585 |
+
79,
|
1586 |
+
80,
|
1587 |
+
81,
|
1588 |
+
82,
|
1589 |
+
83,
|
1590 |
+
84,
|
1591 |
+
85,
|
1592 |
+
90,
|
1593 |
+
91,
|
1594 |
+
92,
|
1595 |
+
94,
|
1596 |
+
18,
|
1597 |
+
19,
|
1598 |
+
79,
|
1599 |
+
80,
|
1600 |
+
15,
|
1601 |
+
16,
|
1602 |
+
17,
|
1603 |
+
78,
|
1604 |
+
79,
|
1605 |
+
80,
|
1606 |
+
83,
|
1607 |
+
84,
|
1608 |
+
85,
|
1609 |
+
86,
|
1610 |
+
87,
|
1611 |
+
89,
|
1612 |
+
90,
|
1613 |
+
91,
|
1614 |
+
93,
|
1615 |
+
95,
|
1616 |
+
15,
|
1617 |
+
13,
|
1618 |
+
14,
|
1619 |
+
15,
|
1620 |
+
76,
|
1621 |
+
77,
|
1622 |
+
78,
|
1623 |
+
85,
|
1624 |
+
86,
|
1625 |
+
87,
|
1626 |
+
88,
|
1627 |
+
89,
|
1628 |
+
90,
|
1629 |
+
94,
|
1630 |
+
13,
|
1631 |
+
14,
|
1632 |
+
15,
|
1633 |
+
76,
|
1634 |
+
34,
|
1635 |
+
35,
|
1636 |
+
36,
|
1637 |
+
38,
|
1638 |
+
39,
|
1639 |
+
40,
|
1640 |
+
41,
|
1641 |
+
60,
|
1642 |
+
61,
|
1643 |
+
62,
|
1644 |
+
63,
|
1645 |
+
64,
|
1646 |
+
65,
|
1647 |
+
66,
|
1648 |
+
67,
|
1649 |
+
34,
|
1650 |
+
35,
|
1651 |
+
43,
|
1652 |
+
44,
|
1653 |
+
45,
|
1654 |
+
47,
|
1655 |
+
48,
|
1656 |
+
49,
|
1657 |
+
50,
|
1658 |
+
68,
|
1659 |
+
69,
|
1660 |
+
70,
|
1661 |
+
71,
|
1662 |
+
72,
|
1663 |
+
73,
|
1664 |
+
74,
|
1665 |
+
75,
|
1666 |
+
43,
|
1667 |
+
44,
|
1668 |
+
]
|
1669 |
+
|
1670 |
+
|
1671 |
+
ri2 = [
|
1672 |
+
0,
|
1673 |
+
2,
|
1674 |
+
4,
|
1675 |
+
6,
|
1676 |
+
8,
|
1677 |
+
4,
|
1678 |
+
0,
|
1679 |
+
2,
|
1680 |
+
4,
|
1681 |
+
6,
|
1682 |
+
8,
|
1683 |
+
4,
|
1684 |
+
0,
|
1685 |
+
2,
|
1686 |
+
4,
|
1687 |
+
6,
|
1688 |
+
8,
|
1689 |
+
0,
|
1690 |
+
0,
|
1691 |
+
2,
|
1692 |
+
4,
|
1693 |
+
6,
|
1694 |
+
8,
|
1695 |
+
8,
|
1696 |
+
0,
|
1697 |
+
0,
|
1698 |
+
2,
|
1699 |
+
4,
|
1700 |
+
6,
|
1701 |
+
8,
|
1702 |
+
8,
|
1703 |
+
0,
|
1704 |
+
0,
|
1705 |
+
2,
|
1706 |
+
1,
|
1707 |
+
1,
|
1708 |
+
0,
|
1709 |
+
2,
|
1710 |
+
4,
|
1711 |
+
6,
|
1712 |
+
1,
|
1713 |
+
1,
|
1714 |
+
0,
|
1715 |
+
2,
|
1716 |
+
4,
|
1717 |
+
6,
|
1718 |
+
1,
|
1719 |
+
1,
|
1720 |
+
0,
|
1721 |
+
2,
|
1722 |
+
4,
|
1723 |
+
3,
|
1724 |
+
2,
|
1725 |
+
1,
|
1726 |
+
0,
|
1727 |
+
2,
|
1728 |
+
4,
|
1729 |
+
6,
|
1730 |
+
3,
|
1731 |
+
2,
|
1732 |
+
1,
|
1733 |
+
0,
|
1734 |
+
2,
|
1735 |
+
4,
|
1736 |
+
6,
|
1737 |
+
3,
|
1738 |
+
2,
|
1739 |
+
1,
|
1740 |
+
6,
|
1741 |
+
3,
|
1742 |
+
3,
|
1743 |
+
1,
|
1744 |
+
0,
|
1745 |
+
2,
|
1746 |
+
4,
|
1747 |
+
7,
|
1748 |
+
6,
|
1749 |
+
3,
|
1750 |
+
3,
|
1751 |
+
1,
|
1752 |
+
0,
|
1753 |
+
2,
|
1754 |
+
4,
|
1755 |
+
7,
|
1756 |
+
6,
|
1757 |
+
6,
|
1758 |
+
4,
|
1759 |
+
3,
|
1760 |
+
1,
|
1761 |
+
0,
|
1762 |
+
2,
|
1763 |
+
4,
|
1764 |
+
8,
|
1765 |
+
6,
|
1766 |
+
4,
|
1767 |
+
3,
|
1768 |
+
1,
|
1769 |
+
0,
|
1770 |
+
2,
|
1771 |
+
4,
|
1772 |
+
8,
|
1773 |
+
6,
|
1774 |
+
7,
|
1775 |
+
5,
|
1776 |
+
3,
|
1777 |
+
1,
|
1778 |
+
0,
|
1779 |
+
2,
|
1780 |
+
4,
|
1781 |
+
9,
|
1782 |
+
7,
|
1783 |
+
5,
|
1784 |
+
3,
|
1785 |
+
1,
|
1786 |
+
0,
|
1787 |
+
2,
|
1788 |
+
4,
|
1789 |
+
9,
|
1790 |
+
7,
|
1791 |
+
6,
|
1792 |
+
5,
|
1793 |
+
3,
|
1794 |
+
1,
|
1795 |
+
0,
|
1796 |
+
2,
|
1797 |
+
4,
|
1798 |
+
6,
|
1799 |
+
5,
|
1800 |
+
3,
|
1801 |
+
1,
|
1802 |
+
0,
|
1803 |
+
2,
|
1804 |
+
4,
|
1805 |
+
6,
|
1806 |
+
5,
|
1807 |
+
3,
|
1808 |
+
7,
|
1809 |
+
5,
|
1810 |
+
3,
|
1811 |
+
1,
|
1812 |
+
0,
|
1813 |
+
2,
|
1814 |
+
4,
|
1815 |
+
7,
|
1816 |
+
5,
|
1817 |
+
3,
|
1818 |
+
1,
|
1819 |
+
0,
|
1820 |
+
2,
|
1821 |
+
4,
|
1822 |
+
7,
|
1823 |
+
5,
|
1824 |
+
3,
|
1825 |
+
9,
|
1826 |
+
7,
|
1827 |
+
5,
|
1828 |
+
3,
|
1829 |
+
1,
|
1830 |
+
0,
|
1831 |
+
2,
|
1832 |
+
5,
|
1833 |
+
9,
|
1834 |
+
7,
|
1835 |
+
5,
|
1836 |
+
3,
|
1837 |
+
1,
|
1838 |
+
0,
|
1839 |
+
2,
|
1840 |
+
5,
|
1841 |
+
9,
|
1842 |
+
9,
|
1843 |
+
7,
|
1844 |
+
5,
|
1845 |
+
3,
|
1846 |
+
1,
|
1847 |
+
0,
|
1848 |
+
2,
|
1849 |
+
5,
|
1850 |
+
8,
|
1851 |
+
9,
|
1852 |
+
7,
|
1853 |
+
5,
|
1854 |
+
3,
|
1855 |
+
1,
|
1856 |
+
0,
|
1857 |
+
2,
|
1858 |
+
5,
|
1859 |
+
7,
|
1860 |
+
5,
|
1861 |
+
3,
|
1862 |
+
1,
|
1863 |
+
0,
|
1864 |
+
2,
|
1865 |
+
5,
|
1866 |
+
9,
|
1867 |
+
9,
|
1868 |
+
7,
|
1869 |
+
5,
|
1870 |
+
3,
|
1871 |
+
1,
|
1872 |
+
0,
|
1873 |
+
2,
|
1874 |
+
5,
|
1875 |
+
9,
|
1876 |
+
9,
|
1877 |
+
5,
|
1878 |
+
3,
|
1879 |
+
1,
|
1880 |
+
0,
|
1881 |
+
2,
|
1882 |
+
4,
|
1883 |
+
9,
|
1884 |
+
5,
|
1885 |
+
3,
|
1886 |
+
1,
|
1887 |
+
0,
|
1888 |
+
2,
|
1889 |
+
4,
|
1890 |
+
9,
|
1891 |
+
5,
|
1892 |
+
3,
|
1893 |
+
6,
|
1894 |
+
3,
|
1895 |
+
1,
|
1896 |
+
0,
|
1897 |
+
2,
|
1898 |
+
6,
|
1899 |
+
6,
|
1900 |
+
3,
|
1901 |
+
1,
|
1902 |
+
0,
|
1903 |
+
2,
|
1904 |
+
6,
|
1905 |
+
6,
|
1906 |
+
3,
|
1907 |
+
1,
|
1908 |
+
0,
|
1909 |
+
2,
|
1910 |
+
7,
|
1911 |
+
3,
|
1912 |
+
1,
|
1913 |
+
0,
|
1914 |
+
3,
|
1915 |
+
7,
|
1916 |
+
7,
|
1917 |
+
3,
|
1918 |
+
1,
|
1919 |
+
0,
|
1920 |
+
3,
|
1921 |
+
7,
|
1922 |
+
7,
|
1923 |
+
3,
|
1924 |
+
1,
|
1925 |
+
0,
|
1926 |
+
3,
|
1927 |
+
6,
|
1928 |
+
3,
|
1929 |
+
1,
|
1930 |
+
1,
|
1931 |
+
3,
|
1932 |
+
6,
|
1933 |
+
6,
|
1934 |
+
3,
|
1935 |
+
1,
|
1936 |
+
1,
|
1937 |
+
3,
|
1938 |
+
6,
|
1939 |
+
6,
|
1940 |
+
3,
|
1941 |
+
1,
|
1942 |
+
1,
|
1943 |
+
3,
|
1944 |
+
7,
|
1945 |
+
3,
|
1946 |
+
1,
|
1947 |
+
1,
|
1948 |
+
3,
|
1949 |
+
7,
|
1950 |
+
7,
|
1951 |
+
3,
|
1952 |
+
1,
|
1953 |
+
1,
|
1954 |
+
3,
|
1955 |
+
7,
|
1956 |
+
7,
|
1957 |
+
3,
|
1958 |
+
1,
|
1959 |
+
1,
|
1960 |
+
3,
|
1961 |
+
6,
|
1962 |
+
3,
|
1963 |
+
0,
|
1964 |
+
1,
|
1965 |
+
3,
|
1966 |
+
6,
|
1967 |
+
6,
|
1968 |
+
3,
|
1969 |
+
0,
|
1970 |
+
1,
|
1971 |
+
3,
|
1972 |
+
6,
|
1973 |
+
6,
|
1974 |
+
3,
|
1975 |
+
0,
|
1976 |
+
1,
|
1977 |
+
3,
|
1978 |
+
7,
|
1979 |
+
2,
|
1980 |
+
0,
|
1981 |
+
1,
|
1982 |
+
3,
|
1983 |
+
5,
|
1984 |
+
7,
|
1985 |
+
2,
|
1986 |
+
0,
|
1987 |
+
1,
|
1988 |
+
3,
|
1989 |
+
5,
|
1990 |
+
7,
|
1991 |
+
2,
|
1992 |
+
0,
|
1993 |
+
1,
|
1994 |
+
3,
|
1995 |
+
5,
|
1996 |
+
2,
|
1997 |
+
0,
|
1998 |
+
1,
|
1999 |
+
3,
|
2000 |
+
5,
|
2001 |
+
5,
|
2002 |
+
2,
|
2003 |
+
0,
|
2004 |
+
1,
|
2005 |
+
3,
|
2006 |
+
5,
|
2007 |
+
5,
|
2008 |
+
2,
|
2009 |
+
0,
|
2010 |
+
1,
|
2011 |
+
3,
|
2012 |
+
4,
|
2013 |
+
2,
|
2014 |
+
0,
|
2015 |
+
1,
|
2016 |
+
3,
|
2017 |
+
5,
|
2018 |
+
8,
|
2019 |
+
4,
|
2020 |
+
2,
|
2021 |
+
0,
|
2022 |
+
1,
|
2023 |
+
3,
|
2024 |
+
5,
|
2025 |
+
8,
|
2026 |
+
4,
|
2027 |
+
2,
|
2028 |
+
0,
|
2029 |
+
5,
|
2030 |
+
2,
|
2031 |
+
0,
|
2032 |
+
1,
|
2033 |
+
3,
|
2034 |
+
5,
|
2035 |
+
7,
|
2036 |
+
9,
|
2037 |
+
5,
|
2038 |
+
2,
|
2039 |
+
0,
|
2040 |
+
1,
|
2041 |
+
3,
|
2042 |
+
5,
|
2043 |
+
7,
|
2044 |
+
9,
|
2045 |
+
5,
|
2046 |
+
4,
|
2047 |
+
2,
|
2048 |
+
0,
|
2049 |
+
1,
|
2050 |
+
3,
|
2051 |
+
5,
|
2052 |
+
7,
|
2053 |
+
9,
|
2054 |
+
4,
|
2055 |
+
2,
|
2056 |
+
0,
|
2057 |
+
1,
|
2058 |
+
3,
|
2059 |
+
5,
|
2060 |
+
7,
|
2061 |
+
9,
|
2062 |
+
4,
|
2063 |
+
4,
|
2064 |
+
2,
|
2065 |
+
0,
|
2066 |
+
1,
|
2067 |
+
3,
|
2068 |
+
5,
|
2069 |
+
7,
|
2070 |
+
9,
|
2071 |
+
4,
|
2072 |
+
2,
|
2073 |
+
0,
|
2074 |
+
1,
|
2075 |
+
3,
|
2076 |
+
5,
|
2077 |
+
7,
|
2078 |
+
9,
|
2079 |
+
4,
|
2080 |
+
4,
|
2081 |
+
2,
|
2082 |
+
0,
|
2083 |
+
1,
|
2084 |
+
3,
|
2085 |
+
5,
|
2086 |
+
7,
|
2087 |
+
4,
|
2088 |
+
2,
|
2089 |
+
0,
|
2090 |
+
1,
|
2091 |
+
3,
|
2092 |
+
5,
|
2093 |
+
7,
|
2094 |
+
4,
|
2095 |
+
2,
|
2096 |
+
0,
|
2097 |
+
9,
|
2098 |
+
4,
|
2099 |
+
2,
|
2100 |
+
0,
|
2101 |
+
1,
|
2102 |
+
3,
|
2103 |
+
5,
|
2104 |
+
6,
|
2105 |
+
9,
|
2106 |
+
4,
|
2107 |
+
2,
|
2108 |
+
0,
|
2109 |
+
1,
|
2110 |
+
3,
|
2111 |
+
5,
|
2112 |
+
6,
|
2113 |
+
9,
|
2114 |
+
9,
|
2115 |
+
4,
|
2116 |
+
2,
|
2117 |
+
0,
|
2118 |
+
1,
|
2119 |
+
3,
|
2120 |
+
5,
|
2121 |
+
6,
|
2122 |
+
9,
|
2123 |
+
4,
|
2124 |
+
2,
|
2125 |
+
0,
|
2126 |
+
1,
|
2127 |
+
3,
|
2128 |
+
5,
|
2129 |
+
6,
|
2130 |
+
9,
|
2131 |
+
8,
|
2132 |
+
4,
|
2133 |
+
2,
|
2134 |
+
0,
|
2135 |
+
1,
|
2136 |
+
3,
|
2137 |
+
4,
|
2138 |
+
6,
|
2139 |
+
8,
|
2140 |
+
4,
|
2141 |
+
2,
|
2142 |
+
0,
|
2143 |
+
1,
|
2144 |
+
3,
|
2145 |
+
4,
|
2146 |
+
6,
|
2147 |
+
8,
|
2148 |
+
6,
|
2149 |
+
4,
|
2150 |
+
2,
|
2151 |
+
0,
|
2152 |
+
1,
|
2153 |
+
3,
|
2154 |
+
3,
|
2155 |
+
5,
|
2156 |
+
6,
|
2157 |
+
4,
|
2158 |
+
2,
|
2159 |
+
0,
|
2160 |
+
1,
|
2161 |
+
3,
|
2162 |
+
3,
|
2163 |
+
5,
|
2164 |
+
6,
|
2165 |
+
6,
|
2166 |
+
4,
|
2167 |
+
2,
|
2168 |
+
0,
|
2169 |
+
1,
|
2170 |
+
2,
|
2171 |
+
3,
|
2172 |
+
6,
|
2173 |
+
4,
|
2174 |
+
2,
|
2175 |
+
0,
|
2176 |
+
1,
|
2177 |
+
2,
|
2178 |
+
3,
|
2179 |
+
6,
|
2180 |
+
4,
|
2181 |
+
2,
|
2182 |
+
6,
|
2183 |
+
4,
|
2184 |
+
2,
|
2185 |
+
0,
|
2186 |
+
1,
|
2187 |
+
1,
|
2188 |
+
6,
|
2189 |
+
4,
|
2190 |
+
2,
|
2191 |
+
0,
|
2192 |
+
1,
|
2193 |
+
1,
|
2194 |
+
6,
|
2195 |
+
4,
|
2196 |
+
2,
|
2197 |
+
0,
|
2198 |
+
1,
|
2199 |
+
8,
|
2200 |
+
6,
|
2201 |
+
4,
|
2202 |
+
2,
|
2203 |
+
0,
|
2204 |
+
0,
|
2205 |
+
9,
|
2206 |
+
8,
|
2207 |
+
6,
|
2208 |
+
4,
|
2209 |
+
2,
|
2210 |
+
0,
|
2211 |
+
0,
|
2212 |
+
9,
|
2213 |
+
8,
|
2214 |
+
6,
|
2215 |
+
4,
|
2216 |
+
8,
|
2217 |
+
6,
|
2218 |
+
4,
|
2219 |
+
2,
|
2220 |
+
0,
|
2221 |
+
6,
|
2222 |
+
8,
|
2223 |
+
6,
|
2224 |
+
4,
|
2225 |
+
2,
|
2226 |
+
0,
|
2227 |
+
6,
|
2228 |
+
8,
|
2229 |
+
6,
|
2230 |
+
4,
|
2231 |
+
2,
|
2232 |
+
0,
|
2233 |
+
2,
|
2234 |
+
4,
|
2235 |
+
5,
|
2236 |
+
8,
|
2237 |
+
3,
|
2238 |
+
1,
|
2239 |
+
6,
|
2240 |
+
2,
|
2241 |
+
4,
|
2242 |
+
5,
|
2243 |
+
8,
|
2244 |
+
3,
|
2245 |
+
1,
|
2246 |
+
6,
|
2247 |
+
2,
|
2248 |
+
4,
|
2249 |
+
5,
|
2250 |
+
7,
|
2251 |
+
1,
|
2252 |
+
1,
|
2253 |
+
5,
|
2254 |
+
0,
|
2255 |
+
8,
|
2256 |
+
7,
|
2257 |
+
1,
|
2258 |
+
1,
|
2259 |
+
5,
|
2260 |
+
0,
|
2261 |
+
8,
|
2262 |
+
7,
|
2263 |
+
1,
|
2264 |
+
1,
|
2265 |
+
5,
|
2266 |
+
0,
|
2267 |
+
7,
|
2268 |
+
1,
|
2269 |
+
2,
|
2270 |
+
8,
|
2271 |
+
6,
|
2272 |
+
0,
|
2273 |
+
5,
|
2274 |
+
9,
|
2275 |
+
8,
|
2276 |
+
8,
|
2277 |
+
7,
|
2278 |
+
1,
|
2279 |
+
2,
|
2280 |
+
8,
|
2281 |
+
6,
|
2282 |
+
0,
|
2283 |
+
5,
|
2284 |
+
8,
|
2285 |
+
2,
|
2286 |
+
1,
|
2287 |
+
4,
|
2288 |
+
0,
|
2289 |
+
6,
|
2290 |
+
7,
|
2291 |
+
9,
|
2292 |
+
8,
|
2293 |
+
2,
|
2294 |
+
1,
|
2295 |
+
4,
|
2296 |
+
0,
|
2297 |
+
6,
|
2298 |
+
7,
|
2299 |
+
9,
|
2300 |
+
8,
|
2301 |
+
1,
|
2302 |
+
0,
|
2303 |
+
5,
|
2304 |
+
5,
|
2305 |
+
7,
|
2306 |
+
1,
|
2307 |
+
0,
|
2308 |
+
5,
|
2309 |
+
5,
|
2310 |
+
7,
|
2311 |
+
1,
|
2312 |
+
0,
|
2313 |
+
5,
|
2314 |
+
5,
|
2315 |
+
7,
|
2316 |
+
1,
|
2317 |
+
0,
|
2318 |
+
4,
|
2319 |
+
0,
|
2320 |
+
2,
|
2321 |
+
2,
|
2322 |
+
6,
|
2323 |
+
6,
|
2324 |
+
2,
|
2325 |
+
8,
|
2326 |
+
4,
|
2327 |
+
0,
|
2328 |
+
2,
|
2329 |
+
2,
|
2330 |
+
6,
|
2331 |
+
6,
|
2332 |
+
2,
|
2333 |
+
8,
|
2334 |
+
4,
|
2335 |
+
4,
|
2336 |
+
0,
|
2337 |
+
2,
|
2338 |
+
1,
|
2339 |
+
4,
|
2340 |
+
7,
|
2341 |
+
4,
|
2342 |
+
4,
|
2343 |
+
5,
|
2344 |
+
9,
|
2345 |
+
9,
|
2346 |
+
7,
|
2347 |
+
4,
|
2348 |
+
0,
|
2349 |
+
2,
|
2350 |
+
1,
|
2351 |
+
4,
|
2352 |
+
5,
|
2353 |
+
2,
|
2354 |
+
0,
|
2355 |
+
3,
|
2356 |
+
9,
|
2357 |
+
9,
|
2358 |
+
4,
|
2359 |
+
2,
|
2360 |
+
7,
|
2361 |
+
5,
|
2362 |
+
4,
|
2363 |
+
8,
|
2364 |
+
9,
|
2365 |
+
8,
|
2366 |
+
6,
|
2367 |
+
6,
|
2368 |
+
5,
|
2369 |
+
5,
|
2370 |
+
7,
|
2371 |
+
9,
|
2372 |
+
0,
|
2373 |
+
0,
|
2374 |
+
3,
|
2375 |
+
3,
|
2376 |
+
2,
|
2377 |
+
6,
|
2378 |
+
7,
|
2379 |
+
5,
|
2380 |
+
7,
|
2381 |
+
9,
|
2382 |
+
0,
|
2383 |
+
0,
|
2384 |
+
3,
|
2385 |
+
3,
|
2386 |
+
2,
|
2387 |
+
5,
|
2388 |
+
0,
|
2389 |
+
6,
|
2390 |
+
7,
|
2391 |
+
2,
|
2392 |
+
5,
|
2393 |
+
0,
|
2394 |
+
6,
|
2395 |
+
7,
|
2396 |
+
2,
|
2397 |
+
5,
|
2398 |
+
0,
|
2399 |
+
6,
|
2400 |
+
7,
|
2401 |
+
2,
|
2402 |
+
5,
|
2403 |
+
1,
|
2404 |
+
1,
|
2405 |
+
8,
|
2406 |
+
5,
|
2407 |
+
0,
|
2408 |
+
4,
|
2409 |
+
9,
|
2410 |
+
7,
|
2411 |
+
1,
|
2412 |
+
1,
|
2413 |
+
8,
|
2414 |
+
5,
|
2415 |
+
0,
|
2416 |
+
4,
|
2417 |
+
9,
|
2418 |
+
7,
|
2419 |
+
1,
|
2420 |
+
8,
|
2421 |
+
1,
|
2422 |
+
1,
|
2423 |
+
7,
|
2424 |
+
4,
|
2425 |
+
0,
|
2426 |
+
6,
|
2427 |
+
9,
|
2428 |
+
8,
|
2429 |
+
1,
|
2430 |
+
1,
|
2431 |
+
7,
|
2432 |
+
4,
|
2433 |
+
0,
|
2434 |
+
6,
|
2435 |
+
9,
|
2436 |
+
8,
|
2437 |
+
7,
|
2438 |
+
2,
|
2439 |
+
1,
|
2440 |
+
0,
|
2441 |
+
6,
|
2442 |
+
9,
|
2443 |
+
8,
|
2444 |
+
9,
|
2445 |
+
7,
|
2446 |
+
2,
|
2447 |
+
1,
|
2448 |
+
0,
|
2449 |
+
6,
|
2450 |
+
9,
|
2451 |
+
8,
|
2452 |
+
9,
|
2453 |
+
7,
|
2454 |
+
8,
|
2455 |
+
5,
|
2456 |
+
4,
|
2457 |
+
2,
|
2458 |
+
2,
|
2459 |
+
1,
|
2460 |
+
6,
|
2461 |
+
8,
|
2462 |
+
5,
|
2463 |
+
4,
|
2464 |
+
2,
|
2465 |
+
2,
|
2466 |
+
1,
|
2467 |
+
6,
|
2468 |
+
8,
|
2469 |
+
5,
|
2470 |
+
4,
|
2471 |
+
9,
|
2472 |
+
7,
|
2473 |
+
6,
|
2474 |
+
3,
|
2475 |
+
0,
|
2476 |
+
0,
|
2477 |
+
3,
|
2478 |
+
6,
|
2479 |
+
2,
|
2480 |
+
7,
|
2481 |
+
9,
|
2482 |
+
7,
|
2483 |
+
6,
|
2484 |
+
3,
|
2485 |
+
0,
|
2486 |
+
0,
|
2487 |
+
3,
|
2488 |
+
7,
|
2489 |
+
3,
|
2490 |
+
0,
|
2491 |
+
3,
|
2492 |
+
5,
|
2493 |
+
2,
|
2494 |
+
2,
|
2495 |
+
9,
|
2496 |
+
8,
|
2497 |
+
4,
|
2498 |
+
5,
|
2499 |
+
7,
|
2500 |
+
6,
|
2501 |
+
7,
|
2502 |
+
9,
|
2503 |
+
6,
|
2504 |
+
7,
|
2505 |
+
2,
|
2506 |
+
0,
|
2507 |
+
4,
|
2508 |
+
2,
|
2509 |
+
1,
|
2510 |
+
3,
|
2511 |
+
2,
|
2512 |
+
7,
|
2513 |
+
9,
|
2514 |
+
5,
|
2515 |
+
8,
|
2516 |
+
2,
|
2517 |
+
0,
|
2518 |
+
4,
|
2519 |
+
2,
|
2520 |
+
1,
|
2521 |
+
3,
|
2522 |
+
0,
|
2523 |
+
4,
|
2524 |
+
3,
|
2525 |
+
1,
|
2526 |
+
5,
|
2527 |
+
2,
|
2528 |
+
6,
|
2529 |
+
8,
|
2530 |
+
0,
|
2531 |
+
4,
|
2532 |
+
3,
|
2533 |
+
1,
|
2534 |
+
5,
|
2535 |
+
2,
|
2536 |
+
6,
|
2537 |
+
8,
|
2538 |
+
0,
|
2539 |
+
5,
|
2540 |
+
6,
|
2541 |
+
5,
|
2542 |
+
5,
|
2543 |
+
1,
|
2544 |
+
5,
|
2545 |
+
8,
|
2546 |
+
8,
|
2547 |
+
5,
|
2548 |
+
6,
|
2549 |
+
5,
|
2550 |
+
5,
|
2551 |
+
1,
|
2552 |
+
5,
|
2553 |
+
8,
|
2554 |
+
8,
|
2555 |
+
5,
|
2556 |
+
0,
|
2557 |
+
1,
|
2558 |
+
9,
|
2559 |
+
0,
|
2560 |
+
1,
|
2561 |
+
9,
|
2562 |
+
0,
|
2563 |
+
1,
|
2564 |
+
9,
|
2565 |
+
0,
|
2566 |
+
1,
|
2567 |
+
9,
|
2568 |
+
0,
|
2569 |
+
1,
|
2570 |
+
9,
|
2571 |
+
0,
|
2572 |
+
1,
|
2573 |
+
7,
|
2574 |
+
0,
|
2575 |
+
1,
|
2576 |
+
9,
|
2577 |
+
9,
|
2578 |
+
9,
|
2579 |
+
9,
|
2580 |
+
7,
|
2581 |
+
0,
|
2582 |
+
1,
|
2583 |
+
9,
|
2584 |
+
9,
|
2585 |
+
9,
|
2586 |
+
9,
|
2587 |
+
7,
|
2588 |
+
0,
|
2589 |
+
1,
|
2590 |
+
4,
|
2591 |
+
0,
|
2592 |
+
5,
|
2593 |
+
2,
|
2594 |
+
0,
|
2595 |
+
2,
|
2596 |
+
4,
|
2597 |
+
4,
|
2598 |
+
0,
|
2599 |
+
5,
|
2600 |
+
2,
|
2601 |
+
0,
|
2602 |
+
2,
|
2603 |
+
4,
|
2604 |
+
4,
|
2605 |
+
0,
|
2606 |
+
5,
|
2607 |
+
6,
|
2608 |
+
5,
|
2609 |
+
0,
|
2610 |
+
8,
|
2611 |
+
6,
|
2612 |
+
6,
|
2613 |
+
9,
|
2614 |
+
6,
|
2615 |
+
6,
|
2616 |
+
5,
|
2617 |
+
0,
|
2618 |
+
8,
|
2619 |
+
6,
|
2620 |
+
6,
|
2621 |
+
9,
|
2622 |
+
6,
|
2623 |
+
6,
|
2624 |
+
3,
|
2625 |
+
2,
|
2626 |
+
0,
|
2627 |
+
2,
|
2628 |
+
7,
|
2629 |
+
7,
|
2630 |
+
5,
|
2631 |
+
7,
|
2632 |
+
8,
|
2633 |
+
3,
|
2634 |
+
2,
|
2635 |
+
0,
|
2636 |
+
2,
|
2637 |
+
7,
|
2638 |
+
7,
|
2639 |
+
5,
|
2640 |
+
7,
|
2641 |
+
2,
|
2642 |
+
0,
|
2643 |
+
2,
|
2644 |
+
1,
|
2645 |
+
1,
|
2646 |
+
2,
|
2647 |
+
4,
|
2648 |
+
3,
|
2649 |
+
5,
|
2650 |
+
7,
|
2651 |
+
2,
|
2652 |
+
0,
|
2653 |
+
2,
|
2654 |
+
1,
|
2655 |
+
1,
|
2656 |
+
2,
|
2657 |
+
4,
|
2658 |
+
4,
|
2659 |
+
3,
|
2660 |
+
7,
|
2661 |
+
1,
|
2662 |
+
0,
|
2663 |
+
5,
|
2664 |
+
4,
|
2665 |
+
8,
|
2666 |
+
8,
|
2667 |
+
8,
|
2668 |
+
4,
|
2669 |
+
3,
|
2670 |
+
7,
|
2671 |
+
1,
|
2672 |
+
0,
|
2673 |
+
5,
|
2674 |
+
4,
|
2675 |
+
7,
|
2676 |
+
4,
|
2677 |
+
7,
|
2678 |
+
0,
|
2679 |
+
9,
|
2680 |
+
6,
|
2681 |
+
6,
|
2682 |
+
6,
|
2683 |
+
7,
|
2684 |
+
4,
|
2685 |
+
7,
|
2686 |
+
0,
|
2687 |
+
9,
|
2688 |
+
6,
|
2689 |
+
6,
|
2690 |
+
6,
|
2691 |
+
7,
|
2692 |
+
4,
|
2693 |
+
5,
|
2694 |
+
6,
|
2695 |
+
7,
|
2696 |
+
8,
|
2697 |
+
2,
|
2698 |
+
5,
|
2699 |
+
4,
|
2700 |
+
1,
|
2701 |
+
9,
|
2702 |
+
6,
|
2703 |
+
1,
|
2704 |
+
9,
|
2705 |
+
4,
|
2706 |
+
5,
|
2707 |
+
6,
|
2708 |
+
7,
|
2709 |
+
8,
|
2710 |
+
9,
|
2711 |
+
3,
|
2712 |
+
4,
|
2713 |
+
6,
|
2714 |
+
2,
|
2715 |
+
3,
|
2716 |
+
1,
|
2717 |
+
2,
|
2718 |
+
9,
|
2719 |
+
7,
|
2720 |
+
4,
|
2721 |
+
0,
|
2722 |
+
5,
|
2723 |
+
8,
|
2724 |
+
9,
|
2725 |
+
3,
|
2726 |
+
9,
|
2727 |
+
6,
|
2728 |
+
5,
|
2729 |
+
6,
|
2730 |
+
7,
|
2731 |
+
7,
|
2732 |
+
3,
|
2733 |
+
1,
|
2734 |
+
7,
|
2735 |
+
4,
|
2736 |
+
2,
|
2737 |
+
3,
|
2738 |
+
6,
|
2739 |
+
4,
|
2740 |
+
1,
|
2741 |
+
4,
|
2742 |
+
0,
|
2743 |
+
8,
|
2744 |
+
5,
|
2745 |
+
3,
|
2746 |
+
3,
|
2747 |
+
1,
|
2748 |
+
8,
|
2749 |
+
8,
|
2750 |
+
9,
|
2751 |
+
7,
|
2752 |
+
3,
|
2753 |
+
1,
|
2754 |
+
0,
|
2755 |
+
5,
|
2756 |
+
8,
|
2757 |
+
3,
|
2758 |
+
8,
|
2759 |
+
5,
|
2760 |
+
8,
|
2761 |
+
4,
|
2762 |
+
2,
|
2763 |
+
8,
|
2764 |
+
4,
|
2765 |
+
3,
|
2766 |
+
9,
|
2767 |
+
1,
|
2768 |
+
1,
|
2769 |
+
7,
|
2770 |
+
8,
|
2771 |
+
8,
|
2772 |
+
4,
|
2773 |
+
2,
|
2774 |
+
8,
|
2775 |
+
4,
|
2776 |
+
3,
|
2777 |
+
9,
|
2778 |
+
6,
|
2779 |
+
5,
|
2780 |
+
9,
|
2781 |
+
7,
|
2782 |
+
9,
|
2783 |
+
6,
|
2784 |
+
0,
|
2785 |
+
0,
|
2786 |
+
3,
|
2787 |
+
5,
|
2788 |
+
2,
|
2789 |
+
9,
|
2790 |
+
6,
|
2791 |
+
5,
|
2792 |
+
9,
|
2793 |
+
7,
|
2794 |
+
9,
|
2795 |
+
3,
|
2796 |
+
4,
|
2797 |
+
1,
|
2798 |
+
5,
|
2799 |
+
5,
|
2800 |
+
3,
|
2801 |
+
2,
|
2802 |
+
1,
|
2803 |
+
9,
|
2804 |
+
3,
|
2805 |
+
4,
|
2806 |
+
1,
|
2807 |
+
5,
|
2808 |
+
5,
|
2809 |
+
3,
|
2810 |
+
2,
|
2811 |
+
9,
|
2812 |
+
8,
|
2813 |
+
8,
|
2814 |
+
9,
|
2815 |
+
6,
|
2816 |
+
7,
|
2817 |
+
9,
|
2818 |
+
9,
|
2819 |
+
6,
|
2820 |
+
0,
|
2821 |
+
0,
|
2822 |
+
5,
|
2823 |
+
6,
|
2824 |
+
2,
|
2825 |
+
4,
|
2826 |
+
9,
|
2827 |
+
8,
|
2828 |
+
4,
|
2829 |
+
8,
|
2830 |
+
8,
|
2831 |
+
2,
|
2832 |
+
3,
|
2833 |
+
2,
|
2834 |
+
8,
|
2835 |
+
1,
|
2836 |
+
8,
|
2837 |
+
1,
|
2838 |
+
9,
|
2839 |
+
4,
|
2840 |
+
8,
|
2841 |
+
8,
|
2842 |
+
2,
|
2843 |
+
3,
|
2844 |
+
2,
|
2845 |
+
3,
|
2846 |
+
5,
|
2847 |
+
8,
|
2848 |
+
8,
|
2849 |
+
1,
|
2850 |
+
3,
|
2851 |
+
9,
|
2852 |
+
0,
|
2853 |
+
3,
|
2854 |
+
7,
|
2855 |
+
8,
|
2856 |
+
5,
|
2857 |
+
0,
|
2858 |
+
5,
|
2859 |
+
3,
|
2860 |
+
5,
|
2861 |
+
8,
|
2862 |
+
9,
|
2863 |
+
6,
|
2864 |
+
5,
|
2865 |
+
6,
|
2866 |
+
8,
|
2867 |
+
6,
|
2868 |
+
1,
|
2869 |
+
4,
|
2870 |
+
7,
|
2871 |
+
6,
|
2872 |
+
4,
|
2873 |
+
2,
|
2874 |
+
5,
|
2875 |
+
4,
|
2876 |
+
2,
|
2877 |
+
4,
|
2878 |
+
0,
|
2879 |
+
9,
|
2880 |
+
8,
|
2881 |
+
6,
|
2882 |
+
4,
|
2883 |
+
3,
|
2884 |
+
3,
|
2885 |
+
4,
|
2886 |
+
9,
|
2887 |
+
1,
|
2888 |
+
1,
|
2889 |
+
0,
|
2890 |
+
4,
|
2891 |
+
7,
|
2892 |
+
2,
|
2893 |
+
9,
|
2894 |
+
8,
|
2895 |
+
6,
|
2896 |
+
8,
|
2897 |
+
7,
|
2898 |
+
7,
|
2899 |
+
5,
|
2900 |
+
4,
|
2901 |
+
5,
|
2902 |
+
2,
|
2903 |
+
5,
|
2904 |
+
8,
|
2905 |
+
1,
|
2906 |
+
1,
|
2907 |
+
6,
|
2908 |
+
7,
|
2909 |
+
8,
|
2910 |
+
7,
|
2911 |
+
7,
|
2912 |
+
5,
|
2913 |
+
9,
|
2914 |
+
8,
|
2915 |
+
8,
|
2916 |
+
9,
|
2917 |
+
9,
|
2918 |
+
7,
|
2919 |
+
4,
|
2920 |
+
7,
|
2921 |
+
9,
|
2922 |
+
5,
|
2923 |
+
0,
|
2924 |
+
0,
|
2925 |
+
1,
|
2926 |
+
6,
|
2927 |
+
3,
|
2928 |
+
9,
|
2929 |
+
8,
|
2930 |
+
9,
|
2931 |
+
5,
|
2932 |
+
5,
|
2933 |
+
2,
|
2934 |
+
4,
|
2935 |
+
3,
|
2936 |
+
2,
|
2937 |
+
3,
|
2938 |
+
1,
|
2939 |
+
9,
|
2940 |
+
5,
|
2941 |
+
5,
|
2942 |
+
2,
|
2943 |
+
4,
|
2944 |
+
3,
|
2945 |
+
2,
|
2946 |
+
3,
|
2947 |
+
6,
|
2948 |
+
9,
|
2949 |
+
9,
|
2950 |
+
6,
|
2951 |
+
8,
|
2952 |
+
1,
|
2953 |
+
0,
|
2954 |
+
6,
|
2955 |
+
8,
|
2956 |
+
9,
|
2957 |
+
5,
|
2958 |
+
3,
|
2959 |
+
4,
|
2960 |
+
6,
|
2961 |
+
9,
|
2962 |
+
9,
|
2963 |
+
6,
|
2964 |
+
9,
|
2965 |
+
8,
|
2966 |
+
6,
|
2967 |
+
6,
|
2968 |
+
5,
|
2969 |
+
6,
|
2970 |
+
7,
|
2971 |
+
8,
|
2972 |
+
4,
|
2973 |
+
2,
|
2974 |
+
0,
|
2975 |
+
8,
|
2976 |
+
7,
|
2977 |
+
9,
|
2978 |
+
8,
|
2979 |
+
6,
|
2980 |
+
6,
|
2981 |
+
1,
|
2982 |
+
5,
|
2983 |
+
2,
|
2984 |
+
7,
|
2985 |
+
5,
|
2986 |
+
3,
|
2987 |
+
2,
|
2988 |
+
0,
|
2989 |
+
3,
|
2990 |
+
1,
|
2991 |
+
5,
|
2992 |
+
2,
|
2993 |
+
7,
|
2994 |
+
5,
|
2995 |
+
3,
|
2996 |
+
2,
|
2997 |
+
0,
|
2998 |
+
7,
|
2999 |
+
4,
|
3000 |
+
3,
|
3001 |
+
4,
|
3002 |
+
9,
|
3003 |
+
7,
|
3004 |
+
5,
|
3005 |
+
1,
|
3006 |
+
3,
|
3007 |
+
7,
|
3008 |
+
7,
|
3009 |
+
6,
|
3010 |
+
7,
|
3011 |
+
2,
|
3012 |
+
2,
|
3013 |
+
3,
|
3014 |
+
4,
|
3015 |
+
6,
|
3016 |
+
7,
|
3017 |
+
4,
|
3018 |
+
3,
|
3019 |
+
4,
|
3020 |
+
6,
|
3021 |
+
9,
|
3022 |
+
0,
|
3023 |
+
0,
|
3024 |
+
9,
|
3025 |
+
9,
|
3026 |
+
6,
|
3027 |
+
9,
|
3028 |
+
7,
|
3029 |
+
0,
|
3030 |
+
7,
|
3031 |
+
2,
|
3032 |
+
8,
|
3033 |
+
5,
|
3034 |
+
3,
|
3035 |
+
3,
|
3036 |
+
3,
|
3037 |
+
2,
|
3038 |
+
5,
|
3039 |
+
7,
|
3040 |
+
6,
|
3041 |
+
7,
|
3042 |
+
8,
|
3043 |
+
3,
|
3044 |
+
2,
|
3045 |
+
7,
|
3046 |
+
4,
|
3047 |
+
4,
|
3048 |
+
8,
|
3049 |
+
5,
|
3050 |
+
1,
|
3051 |
+
6,
|
3052 |
+
2,
|
3053 |
+
3,
|
3054 |
+
5,
|
3055 |
+
0,
|
3056 |
+
2,
|
3057 |
+
3,
|
3058 |
+
5,
|
3059 |
+
1,
|
3060 |
+
6,
|
3061 |
+
2,
|
3062 |
+
3,
|
3063 |
+
5,
|
3064 |
+
0,
|
3065 |
+
2,
|
3066 |
+
7,
|
3067 |
+
6,
|
3068 |
+
6,
|
3069 |
+
6,
|
3070 |
+
7,
|
3071 |
+
8,
|
3072 |
+
9,
|
3073 |
+
8,
|
3074 |
+
4,
|
3075 |
+
2,
|
3076 |
+
8,
|
3077 |
+
0,
|
3078 |
+
8,
|
3079 |
+
7,
|
3080 |
+
6,
|
3081 |
+
6,
|
3082 |
+
6,
|
3083 |
+
8,
|
3084 |
+
7,
|
3085 |
+
6,
|
3086 |
+
5,
|
3087 |
+
7,
|
3088 |
+
8,
|
3089 |
+
9,
|
3090 |
+
3,
|
3091 |
+
1,
|
3092 |
+
1,
|
3093 |
+
3,
|
3094 |
+
1,
|
3095 |
+
2,
|
3096 |
+
8,
|
3097 |
+
7,
|
3098 |
+
6,
|
3099 |
+
5,
|
3100 |
+
7,
|
3101 |
+
5,
|
3102 |
+
4,
|
3103 |
+
5,
|
3104 |
+
9,
|
3105 |
+
7,
|
3106 |
+
5,
|
3107 |
+
5,
|
3108 |
+
1,
|
3109 |
+
4,
|
3110 |
+
5,
|
3111 |
+
1,
|
3112 |
+
5,
|
3113 |
+
7,
|
3114 |
+
5,
|
3115 |
+
4,
|
3116 |
+
5,
|
3117 |
+
8,
|
3118 |
+
5,
|
3119 |
+
4,
|
3120 |
+
6,
|
3121 |
+
8,
|
3122 |
+
8,
|
3123 |
+
2,
|
3124 |
+
2,
|
3125 |
+
8,
|
3126 |
+
4,
|
3127 |
+
9,
|
3128 |
+
0,
|
3129 |
+
9,
|
3130 |
+
8,
|
3131 |
+
5,
|
3132 |
+
4,
|
3133 |
+
6,
|
3134 |
+
9,
|
3135 |
+
8,
|
3136 |
+
4,
|
3137 |
+
4,
|
3138 |
+
6,
|
3139 |
+
8,
|
3140 |
+
5,
|
3141 |
+
8,
|
3142 |
+
2,
|
3143 |
+
5,
|
3144 |
+
5,
|
3145 |
+
4,
|
3146 |
+
6,
|
3147 |
+
1,
|
3148 |
+
9,
|
3149 |
+
8,
|
3150 |
+
4,
|
3151 |
+
9,
|
3152 |
+
8,
|
3153 |
+
5,
|
3154 |
+
4,
|
3155 |
+
6,
|
3156 |
+
7,
|
3157 |
+
1,
|
3158 |
+
3,
|
3159 |
+
1,
|
3160 |
+
1,
|
3161 |
+
3,
|
3162 |
+
2,
|
3163 |
+
9,
|
3164 |
+
8,
|
3165 |
+
5,
|
3166 |
+
4,
|
3167 |
+
6,
|
3168 |
+
9,
|
3169 |
+
8,
|
3170 |
+
7,
|
3171 |
+
7,
|
3172 |
+
8,
|
3173 |
+
9,
|
3174 |
+
9,
|
3175 |
+
6,
|
3176 |
+
0,
|
3177 |
+
2,
|
3178 |
+
8,
|
3179 |
+
1,
|
3180 |
+
5,
|
3181 |
+
5,
|
3182 |
+
9,
|
3183 |
+
8,
|
3184 |
+
7,
|
3185 |
+
3,
|
3186 |
+
6,
|
3187 |
+
3,
|
3188 |
+
0,
|
3189 |
+
2,
|
3190 |
+
8,
|
3191 |
+
3,
|
3192 |
+
4,
|
3193 |
+
3,
|
3194 |
+
6,
|
3195 |
+
0,
|
3196 |
+
3,
|
3197 |
+
6,
|
3198 |
+
3,
|
3199 |
+
0,
|
3200 |
+
2,
|
3201 |
+
8,
|
3202 |
+
8,
|
3203 |
+
6,
|
3204 |
+
8,
|
3205 |
+
1,
|
3206 |
+
0,
|
3207 |
+
1,
|
3208 |
+
9,
|
3209 |
+
6,
|
3210 |
+
3,
|
3211 |
+
6,
|
3212 |
+
9,
|
3213 |
+
6,
|
3214 |
+
6,
|
3215 |
+
9,
|
3216 |
+
7,
|
3217 |
+
1,
|
3218 |
+
8,
|
3219 |
+
6,
|
3220 |
+
5,
|
3221 |
+
6,
|
3222 |
+
2,
|
3223 |
+
0,
|
3224 |
+
3,
|
3225 |
+
4,
|
3226 |
+
3,
|
3227 |
+
9,
|
3228 |
+
5,
|
3229 |
+
3,
|
3230 |
+
0,
|
3231 |
+
9,
|
3232 |
+
6,
|
3233 |
+
5,
|
3234 |
+
6,
|
3235 |
+
2,
|
3236 |
+
9,
|
3237 |
+
8,
|
3238 |
+
8,
|
3239 |
+
7,
|
3240 |
+
7,
|
3241 |
+
9,
|
3242 |
+
9,
|
3243 |
+
7,
|
3244 |
+
2,
|
3245 |
+
0,
|
3246 |
+
1,
|
3247 |
+
8,
|
3248 |
+
5,
|
3249 |
+
5,
|
3250 |
+
9,
|
3251 |
+
8,
|
3252 |
+
8,
|
3253 |
+
9,
|
3254 |
+
8,
|
3255 |
+
9,
|
3256 |
+
8,
|
3257 |
+
1,
|
3258 |
+
4,
|
3259 |
+
0,
|
3260 |
+
0,
|
3261 |
+
4,
|
3262 |
+
8,
|
3263 |
+
1,
|
3264 |
+
4,
|
3265 |
+
7,
|
3266 |
+
9,
|
3267 |
+
8,
|
3268 |
+
9,
|
3269 |
+
8,
|
3270 |
+
8,
|
3271 |
+
9,
|
3272 |
+
9,
|
3273 |
+
6,
|
3274 |
+
4,
|
3275 |
+
7,
|
3276 |
+
7,
|
3277 |
+
4,
|
3278 |
+
0,
|
3279 |
+
4,
|
3280 |
+
7,
|
3281 |
+
9,
|
3282 |
+
1,
|
3283 |
+
9,
|
3284 |
+
6,
|
3285 |
+
6,
|
3286 |
+
8,
|
3287 |
+
8,
|
3288 |
+
9,
|
3289 |
+
9,
|
3290 |
+
4,
|
3291 |
+
1,
|
3292 |
+
8,
|
3293 |
+
5,
|
3294 |
+
0,
|
3295 |
+
0,
|
3296 |
+
4,
|
3297 |
+
1,
|
3298 |
+
9,
|
3299 |
+
8,
|
3300 |
+
8,
|
3301 |
+
9,
|
3302 |
+
9,
|
3303 |
+
4,
|
3304 |
+
9,
|
3305 |
+
7,
|
3306 |
+
7,
|
3307 |
+
8,
|
3308 |
+
7,
|
3309 |
+
7,
|
3310 |
+
8,
|
3311 |
+
5,
|
3312 |
+
3,
|
3313 |
+
0,
|
3314 |
+
2,
|
3315 |
+
3,
|
3316 |
+
2,
|
3317 |
+
0,
|
3318 |
+
3,
|
3319 |
+
9,
|
3320 |
+
7,
|
3321 |
+
7,
|
3322 |
+
7,
|
3323 |
+
9,
|
3324 |
+
8,
|
3325 |
+
7,
|
3326 |
+
7,
|
3327 |
+
8,
|
3328 |
+
4,
|
3329 |
+
3,
|
3330 |
+
0,
|
3331 |
+
3,
|
3332 |
+
4,
|
3333 |
+
3,
|
3334 |
+
0,
|
3335 |
+
2,
|
3336 |
+
7,
|
3337 |
+
7,
|
3338 |
+
]
|
third_party/PIPNet/run_demo.sh
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# image
|
2 |
+
python lib/demo.py experiments/WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py images/1.jpg
|
3 |
+
#python lib/demo.py experiments/data_300W_CELEBA/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py images/2.jpg
|
4 |
+
|
5 |
+
# video
|
6 |
+
#python lib/demo_video.py experiments/WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py videos/002.avi
|
7 |
+
#python lib/demo_video.py experiments/data_300W_CELEBA/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py videos/007.avi
|
8 |
+
|
9 |
+
# camera
|
10 |
+
#python lib/demo_video.py experiments/WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py camera
|
11 |
+
|
third_party/PIPNet/run_test.sh
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# supervised learning
|
2 |
+
|
3 |
+
# 300W, resnet18
|
4 |
+
#python lib/test.py experiments/data_300W/pip_32_16_60_r18_l2_l1_10_1_nb10.py test.txt images_test
|
5 |
+
# 300W, resnet101
|
6 |
+
#python lib/test.py experiments/data_300W/pip_32_16_60_r101_l2_l1_10_1_nb10.py test.txt images_test
|
7 |
+
|
8 |
+
# COFW, resnet18
|
9 |
+
#python lib/test.py experiments/COFW/pip_32_16_60_r18_l2_l1_10_1_nb10.py test.txt images_test
|
10 |
+
# COFW, resnet101
|
11 |
+
#python lib/test.py experiments/COFW/pip_32_16_60_r101_l2_l1_10_1_nb10.py test.txt images_test
|
12 |
+
|
13 |
+
# WFLW, resnet18
|
14 |
+
#python lib/test.py experiments/WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py test.txt images_test
|
15 |
+
# WFLW, resnet101
|
16 |
+
#python lib/test.py experiments/WFLW/pip_32_16_60_r101_l2_l1_10_1_nb10.py test.txt images_test
|
17 |
+
|
18 |
+
# AFLW, resnet18
|
19 |
+
#python lib/test.py experiments/AFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py test.txt images_test
|
20 |
+
# AFLW, resnet101
|
21 |
+
#python lib/test.py experiments/AFLW/pip_32_16_60_r101_l2_l1_10_1_nb10.py test.txt images_test
|
22 |
+
|
23 |
+
######################################################################################
|
24 |
+
# GSSL
|
25 |
+
|
26 |
+
# 300W + COFW_68 (unlabeled) + WFLW_68 (unlabeled), resnet18, with curriculum
|
27 |
+
#python lib/test.py experiments/data_300W_COFW_WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py test_300W.txt images_test_300W
|
28 |
+
#python lib/test.py experiments/data_300W_COFW_WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py test_COFW.txt images_test_COFW
|
29 |
+
#python lib/test.py experiments/data_300W_COFW_WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py test_WFLW.txt images_test_WFLW
|
30 |
+
|
31 |
+
# 300W + CelebA (unlabeled), resnet18, with curriculum
|
32 |
+
#python lib/test.py experiments/data_300W_CELEBA/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py test_300W.txt images_test_300W
|
33 |
+
#python lib/test.py experiments/data_300W_CELEBA/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py test_COFW.txt images_test_COFW
|
34 |
+
#python lib/test.py experiments/data_300W_CELEBA/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py test_WFLW.txt images_test_WFLW
|
third_party/PIPNet/run_train.sh
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
######################################################################################
|
2 |
+
# supervised learning
|
3 |
+
|
4 |
+
# 300W, resnet18
|
5 |
+
#python lib/train.py experiments/data_300W/pip_32_16_60_r18_l2_l1_10_1_nb10.py
|
6 |
+
# 300W, resnet101
|
7 |
+
#python lib/train.py experiments/data_300W/pip_32_16_60_r101_l2_l1_10_1_nb10.py
|
8 |
+
|
9 |
+
# COFW, resnet18
|
10 |
+
#python lib/train.py experiments/COFW/pip_32_16_60_r18_l2_l1_10_1_nb10.py
|
11 |
+
# COFW, resnet101
|
12 |
+
#python lib/train.py experiments/COFW/pip_32_16_60_r101_l2_l1_10_1_nb10.py
|
13 |
+
|
14 |
+
# WFLW, resnet18
|
15 |
+
#python lib/train.py experiments/WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py
|
16 |
+
# WFLW, resnet101
|
17 |
+
#python lib/train.py experiments/WFLW/pip_32_16_60_r101_l2_l1_10_1_nb10.py
|
18 |
+
|
19 |
+
# AFLW, resnet18
|
20 |
+
#python lib/train.py experiments/AFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py
|
21 |
+
# AFLW, resnet101
|
22 |
+
#python lib/train.py experiments/AFLW/pip_32_16_60_r101_l2_l1_10_1_nb10.py
|
23 |
+
|
24 |
+
######################################################################################
|
25 |
+
# GSSL
|
26 |
+
|
27 |
+
# 300W + COFW_68 (unlabeled) + WFLW_68 (unlabeled), resnet18, with curriculum
|
28 |
+
#python lib/train_gssl.py experiments/data_300W_COFW_WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py
|
29 |
+
|
30 |
+
# 300W + CelebA (unlabeled), resnet18, with curriculum
|
31 |
+
#nohup python lib/train_gssl.py experiments/data_300W_CELEBA/pip_32_16_60_r18_l2_l1_10_1_nb10_wcc.py &
|
32 |
+
|
33 |
+
|
weights/PIPNet/FaceBoxesV2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aae07fec4b62ac655508c06336662538803407852312ca5009fd93fb487d8cd7
|
3 |
+
size 4153573
|
weights/PIPNet/epoch59.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63ad4b1598d8933da1fcf9170cbe4b624660bc4d42debce42ac44e90772cbba0
|
3 |
+
size 189011113
|
weights/arcface/mouth_net_28_56_84_112.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be0e327057e3dcf1d676e3a186f7059df4d8f1ea9d9dab71a76c74823a8b51bf
|
3 |
+
size 127486882
|