File size: 17,265 Bytes
339b2b8 8b19867 c3b944d 8b19867 c3b944d 339b2b8 8b19867 0ebdef0 18eb2fe 8b19867 c3b944d fac4d19 8b19867 0ebdef0 18eb2fe 0ebdef0 18eb2fe 0ebdef0 8b19867 fac4d19 8b19867 c3b944d 51e733e 18eb2fe 51e733e 8b19867 fac4d19 8b19867 18eb2fe 2176dd5 8b19867 18eb2fe 2176dd5 8b19867 fac4d19 c3b944d 8b19867 0ebdef0 8b19867 fac4d19 8b19867 18eb2fe 8b19867 fac4d19 51e733e 8b19867 c3b944d 8b19867 18eb2fe 8b19867 6abdefa 18eb2fe 6abdefa 8b19867 18eb2fe 8b19867 18eb2fe 8b19867 18eb2fe 8b19867 6abdefa 8b19867 18eb2fe 8b19867 6abdefa 8b19867 18eb2fe 8b19867 6abdefa 8b19867 18eb2fe 8b19867 6abdefa 8b19867 18eb2fe 8b19867 c3b944d 8b19867 c3b944d 8b19867 18eb2fe fac4d19 c3b944d 8b19867 c3b944d 8b19867 e61b61b 8b19867 9f15f5c 18eb2fe 9f15f5c 18eb2fe 8b19867 c3b944d 8b19867 c3b944d 8b19867 08f4103 8b19867 18eb2fe 8b19867 18eb2fe c3b944d 8b19867 c3b944d 8b19867 18eb2fe 8b19867 51e733e c3b944d 8b19867 e2ff232 18eb2fe 8b19867 51e733e c3b944d 8b19867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import spaces
import os
import random
from datetime import datetime
from typing import Optional
import gradio as gr
import numpy as np
import torch
from diffusers import (
AnimateDiffPipeline,
DiffusionPipeline,
LCMScheduler,
MotionAdapter,
)
from diffusers.utils import export_to_video
from peft import PeftModel
device = "cuda"
mcm_id = "yhzhai/mcm"
basedir = os.getcwd()
savedir = os.path.join(
basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S")
)
MAX_SEED = np.iinfo(np.int32).max
def get_modelscope_pipeline(
mcm_variant: Optional[str] = "WebVid",
):
model_id = "ali-vilab/text-to-video-ms-1.7b"
# if torch.cuda.is_available():
# pipe = DiffusionPipeline.from_pretrained(
# model_id, torch_dtype=torch.float16, variant="fp16"
# )
# else:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
scheduler = LCMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
timestep_scaling=4.0,
)
pipe.scheduler = scheduler
pipe.enable_vae_slicing()
if mcm_variant == "WebVid":
subfolder = "modelscopet2v-webvid"
elif mcm_variant == "LAION-aes":
subfolder = "modelscopet2v-laion"
elif mcm_variant == "Anime":
subfolder = "modelscopet2v-anime"
elif mcm_variant == "Realistic":
subfolder = "modelscopet2v-real"
elif mcm_variant == "3D Cartoon":
subfolder = "modelscopet2v-3d-cartoon"
else:
subfolder = "modelscopet2v-laion"
lora = PeftModel.from_pretrained(
pipe.unet,
model_id=mcm_id,
subfolder=subfolder,
adapter_name="lora",
torch_device="cpu",
)
lora.merge_and_unload()
pipe.unet = lora
pipe = pipe.to(device)
return pipe
def get_animatediff_pipeline(
real_variant: Optional[str] = "realvision",
motion_module_path: str = "guoyww/animatediff-motion-adapter-v1-5-2",
mcm_variant: Optional[str] = "WebVid",
):
if real_variant is None:
model_id = "runwayml/stable-diffusion-v1-5"
elif real_variant == "epicrealism":
model_id = "emilianJR/epiCRealism"
elif real_variant == "realvision":
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
else:
raise ValueError(f"Unknown real_variant {real_variant}")
# if torch.cuda.is_available():
# adapter = MotionAdapter.from_pretrained(
# motion_module_path, torch_dtype=torch.float16
# )
# pipe = AnimateDiffPipeline.from_pretrained(
# model_id,
# motion_adapter=adapter,
# torch_dtype=torch.float16,
# )
# else:
adapter = MotionAdapter.from_pretrained(motion_module_path)
pipe = AnimateDiffPipeline.from_pretrained(
model_id,
motion_adapter=adapter, torch_dtype=torch.float16
)
scheduler = LCMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
timestep_scaling=4.0,
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
)
pipe.scheduler = scheduler
pipe.enable_vae_slicing()
if mcm_variant == "WebVid":
subfolder = "animatediff-webvid"
elif mcm_variant == "LAION-aes":
subfolder = "animatediff-laion"
else:
subfolder = "animatediff-laion"
lora = PeftModel.from_pretrained(
pipe.unet,
model_id=mcm_id,
subfolder=subfolder,
adapter_name="lora",
torch_device="cpu",
)
lora.merge_and_unload()
pipe.unet = lora
pipe = pipe.to(device)
return pipe
pipe_dict = {
"ModelScope T2V": {
"WebVid": None,
"LAION-aes": None,
"Anime": None,
"Realistic": None,
"3D Cartoon": None,
},
"AnimateDiff (SD1.5)": {"WebVid": None, "LAION-aes": None},
"AnimateDiff (RealisticVision)": {"WebVid": None, "LAION-aes": None},
"AnimateDiff (epiCRealism)": {"WebVid": None, "LAION-aes": None},
}
cache_pipeline = {
"base_model": None,
"variant": None,
"pipeline": None,
}
# def init_pipelines():
# for base_model in variants.keys():
# for variant in variants[base_model]:
# if pipe_dict[base_model][variant] is None:
# if base_model == "ModelScope T2V":
# pipe_dict[base_model][variant] = get_modelscope_pipeline(mcm_variant=variant)
# elif base_model == "AnimateDiff (SD1.5)":
# pipe_dict[base_model][variant] = get_animatediff_pipeline(
# real_variant=None,
# motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
# mcm_variant=variant,
# )
# elif base_model == "AnimateDiff (RealisticVision)":
# pipe_dict[base_model][variant] = get_animatediff_pipeline(
# real_variant="realvision",
# motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
# mcm_variant=variant,
# )
# elif base_model == "AnimateDiff (epiCRealism)":
# pipe_dict[base_model][variant] = get_animatediff_pipeline(
# real_variant="epicrealism",
# motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
# mcm_variant=variant,
# )
# else:
# raise ValueError(f"Unknown base_model {base_model}")
@spaces.GPU(duration=60)
def infer(
base_model,
variant,
prompt,
num_inference_steps=4,
height=256,
width=256,
seed=0,
randomize_seed=True,
progress = gr.Progress(track_tqdm=True),
):
# if pipe_dict[base_model][variant] is None:
# if base_model == "ModelScope T2V":
# pipe_dict[base_model][variant] = get_modelscope_pipeline(mcm_variant=variant)
# elif base_model == "AnimateDiff (SD1.5)":
# pipe_dict[base_model][variant] = get_animatediff_pipeline(
# real_variant=None,
# motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
# mcm_variant=variant,
# )
# elif base_model == "AnimateDiff (RealisticVision)":
# pipe_dict[base_model][variant] = get_animatediff_pipeline(
# real_variant="realvision",
# motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
# mcm_variant=variant,
# )
# elif base_model == "AnimateDiff (epiCRealism)":
# pipe_dict[base_model][variant] = get_animatediff_pipeline(
# real_variant="epicrealism",
# motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
# mcm_variant=variant,
# )
# else:
# raise ValueError(f"Unknown base_model {base_model}")
if (
cache_pipeline["base_model"] == base_model
and cache_pipeline["variant"] == variant
):
pass
else:
if base_model == "ModelScope T2V":
pipeline = get_modelscope_pipeline(mcm_variant=variant)
elif base_model == "AnimateDiff (SD1.5)":
pipeline = get_animatediff_pipeline(
real_variant=None,
motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
mcm_variant=variant,
)
elif base_model == "AnimateDiff (RealisticVision)":
pipeline = get_animatediff_pipeline(
real_variant="realvision",
motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
mcm_variant=variant,
)
elif base_model == "AnimateDiff (epiCRealism)":
pipeline = get_animatediff_pipeline(
real_variant="epicrealism",
motion_module_path="guoyww/animatediff-motion-adapter-v1-5-2",
mcm_variant=variant,
)
else:
raise ValueError(f"Unknown base_model {base_model}")
cache_pipeline["base_model"] = base_model
cache_pipeline["variant"] = variant
cache_pipeline["pipeline"] = pipeline
# pipe_dict[base_model][variant] = pipe_dict[base_model][variant].to(device)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator("cpu").manual_seed(seed)
output = cache_pipeline["pipeline"](
prompt=prompt,
num_frames=16,
guidance_scale=1.0,
num_inference_steps=num_inference_steps,
height=height,
width=width,
generator=generator,
).frames
if not isinstance(output, list):
output = [output[i] for i in range(output.shape[0])]
os.makedirs(savedir, exist_ok=True)
save_path = os.path.join(
savedir, f"sample_{base_model}_{variant}_{seed}.mp4".replace(" ", "_")
)
export_to_video(
output[0],
save_path,
fps=7,
)
print(f"Saved to {save_path}")
# pipe_dict[base_model][variant] = pipe_dict[base_model][variant].to("cpu")
return save_path, seed
examples = [
[
"ModelScope T2V",
"LAION-aes",
"Aerial uhd 4k view. mid-air flight over fresh and clean mountain river at sunny summer morning. Green trees and sun rays on horizon. Direct on sun.",
4,
256,
256,
],
[
"ModelScope T2V",
"Anime",
"Timelapse misty mountain landscape",
4,
256,
256,
],
[
"ModelScope T2V",
"WebVid",
"Back of woman in shorts going near pure creek in beautiful mountains.",
4,
256,
256,
],
[
"ModelScope T2V",
"3D Cartoon",
"A rotating pandoro (a traditional italian sweet yeast bread, most popular around christmas and new year) being eaten in time-lapse.",
4,
256,
256,
],
[
"ModelScope T2V",
"Realistic",
"Slow motion avocado with a stone falls and breaks into 2 parts with splashes",
4,
256,
256,
],
[
"AnimateDiff (epiCRealism)",
"LAION-aes",
"Slow motion of delicious salmon sachimi set with green vegetables leaves served on wood plate. make homemade japanese food at home.-dan",
8,
512,
512,
],
[
"AnimateDiff (epiCRealism)",
"WebVid",
"Blooming meadow panorama zoom-out shot heavenly clouds and upcoming thunderstorm in mountain range harz, germany.",
8,
512,
512,
],
[
"AnimateDiff (epiCRealism)",
"LAION-aes",
"A young woman in a yellow sweater uses vr glasses, sitting on the shore of a pond on a background of dark waves. a strong wind develops her hair, the sun's rays are reflected from the water.",
8,
512,
512,
],
[
"AnimateDiff (epiCRealism)",
"LAION-aes",
"Female running at sunset. healthy fitness concept",
8,
512,
512,
],
]
css = """
#col-container {
margin: 0 auto;
}
"""
variants = {
"ModelScope T2V": ["WebVid", "LAION-aes", "Anime", "Realistic", "3D Cartoon"],
"AnimateDiff (SD1.5)": ["WebVid", "LAION-aes"],
"AnimateDiff (RealisticVision)": ["WebVid", "LAION-aes"],
"AnimateDiff (epiCRealism)": ["WebVid", "LAION-aes"],
}
def update_variant(rs):
return gr.update(choices=variants[rs], value=None)
# init_pipelines()
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 20px;">
<h1 align="center">
<a href="https://yhzhai.github.io/mcm/"><b>Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation</b></a>
</h1>
<h4>Our motion consistency model not only accelerates text2video diffusion model sampling process, but also can benefit from an additional high-quality image dataset to improve the frame quality of generated videos.</h4>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://yhzhai.github.io/mcm/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='https://arxiv.org/abs/2406.06890'><img src='https://img.shields.io/badge/Paper-arXiv-red'></a>
<a href='https://huggingface.co/yhzhai/mcm'><img src='https://img.shields.io/badge/HF-checkpoint-yellow'></a>
</div>
</div>
"""
)
gr.Markdown(
f"""
<p align="center">Currently running on {device}.</p>
<p align="center">Model loading takes extra time.</p>
"""
)
# <p align="center">ModelScope T2V works the best for resolution 256x256, and AnimateDiff works the best for 512x512.</p>
with gr.Row():
base_model = gr.Dropdown(
label="Base model",
choices=[
"ModelScope T2V",
"AnimateDiff (SD1.5)",
"AnimateDiff (RealisticVision)",
"AnimateDiff (epiCRealism)",
],
value="ModelScope T2V",
interactive=True,
)
variant_dropdown = gr.Dropdown(
variants["ModelScope T2V"],
label="MCM Variant",
interactive=True,
value=None,
)
base_model.change(
update_variant, inputs=[base_model], outputs=[variant_dropdown]
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=4,
)
with gr.Group():
with gr.Row():
text_hint = gr.Textbox(
"Hint: ModelScope T2V works the best for resolution 256x256, and AnimateDiff works the best for resolution 512x512.",
interactive=False,
label="Hint",
container=False,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1024,
step=64,
value=512,
interactive=True,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1024,
step=64,
value=512,
interactive=True,
)
with gr.Column(show_progress=True):
# result = gr.Video(label="Result", show_label=False, interactive=False, height=512, width=512, autoplay=True)
result = gr.Video(
label="Result",
show_label=False,
interactive=False,
autoplay=True,
# height=512,
# width=512,
)
gr.Examples(
examples=examples,
inputs=[base_model, variant_dropdown, prompt, num_inference_steps, height, width],
fn=infer,
outputs=[result, seed],
)
run_button.click(
fn=infer,
inputs=[
base_model,
variant_dropdown,
prompt,
num_inference_steps,
height,
width,
seed,
randomize_seed,
],
outputs=[result, seed],
)
demo.queue().launch()
|