updated model result download
Browse files- dash/numerdash_app.py +197 -293
- project_tools/numerapi_utils.py +41 -0
- project_tools/project_config.py +12 -8
- project_tools/project_utils.py +3 -0
dash/numerdash_app.py
CHANGED
@@ -19,6 +19,12 @@ import traceback
|
|
19 |
import datetime
|
20 |
|
21 |
st.set_page_config(layout='wide')
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def sidebar_data_picker():
|
24 |
st.sidebar.subheader('Model Data Picker')
|
@@ -28,7 +34,9 @@ def sidebar_data_picker():
|
|
28 |
special_list = st.sidebar.checkbox('model from specific users', value=True)
|
29 |
return top_lb, top_tp3m, top_tp1y, special_list
|
30 |
|
31 |
-
|
|
|
|
|
32 |
if values is None:
|
33 |
values = [True, True, True, True, True, True]
|
34 |
model_dict = {}
|
@@ -58,7 +66,9 @@ def model_data_picker(values = None):
|
|
58 |
model_dict['mcv'] = project_config.MCV_MODELS + project_config.MCV_NEW_MODELS
|
59 |
return model_dict
|
60 |
|
61 |
-
|
|
|
|
|
62 |
text_content = '''
|
63 |
fast model picker by CSV string.
|
64 |
example: "model1, model2, model3"
|
@@ -75,6 +85,39 @@ def model_fast_picker(models):
|
|
75 |
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def generate_round_table(data, row_cts, c, r, sortcol='corrmmc'):
|
79 |
# rounds = data
|
80 |
# row_cts[c].write(2*r+c)
|
@@ -202,157 +245,137 @@ def round_view(data, select_perview, select_metric=None):
|
|
202 |
generate_live_round_stake(data, row_cts, c, r)
|
203 |
|
204 |
|
205 |
-
def
|
206 |
models = []
|
207 |
-
st.sidebar.subheader('Choose a Table View')
|
208 |
-
select_perview = st.sidebar.selectbox("", list(tbl_opt.keys()), index=0, format_func=lambda x: tbl_opt[x])
|
209 |
-
model_dict = model_data_picker(values=[False, False, False, False, True, True])
|
210 |
data = []
|
211 |
-
|
212 |
-
models += model_dict[k]
|
213 |
-
if os.path.isfile(project_config.DASHBOARD_MODEL_RESULT_FILE) and len(models)>0:
|
214 |
-
data = project_utils.load_data(project_config.DASHBOARD_MODEL_RESULT_FILE)
|
215 |
-
if select_perview=='round_result':
|
216 |
-
data = data.drop(['fnc', 'fnc_pct'], axis=1)
|
217 |
-
data = data.drop_duplicates(['model', 'roundNumber'], keep='first')
|
218 |
-
data = data[data['model'].isin(models)].reset_index(drop=True)
|
219 |
-
round_view(data, select_perview)
|
220 |
-
if select_perview=='dailyscore_metric':
|
221 |
-
st.sidebar.subheader('Select Round Data')
|
222 |
-
latest_round = int(data['roundNumber'].max())
|
223 |
-
earliest_round = int(data['roundNumber'].min())
|
224 |
-
if (latest_round - earliest_round) > 10:
|
225 |
-
# suggest_round = int(latest_round - (latest_round - earliest_round) / 2)
|
226 |
-
suggest_round = 263
|
227 |
-
else:
|
228 |
-
suggest_round = earliest_round
|
229 |
-
select_rounds = st.sidebar.slider('select a round', earliest_round, latest_round, (suggest_round, latest_round - 1), 1)
|
230 |
-
data = data[(data['model'].isin(models))]
|
231 |
-
data = data[(data['roundNumber']>=select_rounds[0]) & (data['roundNumber']<=select_rounds[1])]
|
232 |
-
# st.write(data.shape, latest_round, earliest_round, suggest_round, select_rounds)
|
233 |
-
st.write(f'Key columns: sos - Sharpe raito of daily score sharpe, avg_sharpe - Average of daily score sharpe')
|
234 |
-
round_view(data, select_perview)
|
235 |
-
# round_view(models, )
|
236 |
-
if select_perview=='round_metric':
|
237 |
-
st.sidebar.subheader('Select Round Data')
|
238 |
-
latest_round = int(data['roundNumber'].max())
|
239 |
-
earliest_round = int(data['roundNumber'].min())
|
240 |
-
if (latest_round - earliest_round) > 10:
|
241 |
-
# suggest_round = int(latest_round - (latest_round - earliest_round) / 2)
|
242 |
-
suggest_round = 263
|
243 |
-
else:
|
244 |
-
suggest_round = earliest_round
|
245 |
-
select_rounds = st.sidebar.slider('select a round', earliest_round, latest_round, (suggest_round, latest_round - 1), 1)
|
246 |
-
|
247 |
-
data = data.drop(['fnc', 'fnc_pct'], axis=1)
|
248 |
-
data = data.drop_duplicates(['model', 'roundNumber'], keep='first')
|
249 |
-
data = data[(data['roundNumber']>=select_rounds[0]) & (data['roundNumber']<=select_rounds[1])]
|
250 |
-
data = data[data['model'].isin(models)].reset_index(drop=True)
|
251 |
-
|
252 |
-
roundmetrics_data = get_roundmetric_data(data)
|
253 |
-
min_count = int(roundmetrics_data['count'].min())
|
254 |
-
max_count = int(roundmetrics_data['count'].max())
|
255 |
-
if min_count<max_count:
|
256 |
-
select_minround = st.sidebar.slider('miminum number of rounds', min_count, max_count, min_count, 1)
|
257 |
-
else:
|
258 |
-
select_minround = min_count
|
259 |
-
roundmetrics_data = roundmetrics_data[roundmetrics_data['count']>=select_minround].reset_index(drop=True)
|
260 |
-
# st.write(roundmetrics_data.shape)
|
261 |
-
round_view(roundmetrics_data, select_perview)
|
262 |
-
# st.write(roundmetrics_data)
|
263 |
-
else:
|
264 |
-
st.info('model result data file missing, or no model is selected')
|
265 |
-
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
|
269 |
def data_operation():
|
270 |
# top_lb, top_tp3m, top_tp1y, special_list = sidebar_data_picker()
|
271 |
latest_round = project_utils.latest_round
|
272 |
models = []
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
276 |
suggest_min_round = 182 #latest_round-50
|
277 |
min_round, max_round = st.slider('select tournament rounds', 200, latest_round, (suggest_min_round, latest_round), 1)
|
278 |
roundlist = [i for i in range(max_round, min_round-1, -1)]
|
279 |
-
download = st.button('download data of
|
280 |
st.sidebar.subheader('configuration')
|
281 |
show_info=st.sidebar.checkbox('show background data', value=False)
|
282 |
-
update_numeraiti_data = st.sidebar.checkbox('update numerati data', value=True)
|
283 |
-
update_model_data = st.sidebar.checkbox('update model data', value=True)
|
|
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
project_utils.update_numerati_data()
|
292 |
-
|
293 |
-
if update_model_data:
|
294 |
-
model_dfs = []
|
295 |
-
my_bar = st.progress(0.0)
|
296 |
-
my_bar.progress(0.0)
|
297 |
-
percent_complete = 0.0
|
298 |
-
# models = models[0:5]
|
299 |
-
for i in range(len(models)):
|
300 |
-
message = ''
|
301 |
-
try:
|
302 |
-
model_res = numerapi_utils.daily_submissions_performances(models[i])
|
303 |
-
if len(model_res) > 0:
|
304 |
-
cols = ['model'] + list(model_res[0].keys())
|
305 |
-
model_df = pd.DataFrame(model_res)
|
306 |
-
model_df['model'] = models[i]
|
307 |
-
model_df = model_df[cols]
|
308 |
-
model_dfs.append(model_df)
|
309 |
-
else:
|
310 |
-
message = f'no result found for model {models[i]}'
|
311 |
-
except Exception:
|
312 |
-
# if show_info:
|
313 |
-
# st.write(f'error while getting result for {models[i]}')
|
314 |
-
except_msg = traceback.format_exc()
|
315 |
-
message = f'error while getting result for {models[i]}: {except_msg}'
|
316 |
-
if show_info and len(message)>0:
|
317 |
-
st.info(message)
|
318 |
-
percent_complete += 1/len(models)
|
319 |
-
if i == len(models)-1:
|
320 |
-
percent_complete = 1.0
|
321 |
-
time.sleep(0.1)
|
322 |
-
my_bar.progress(percent_complete)
|
323 |
-
model_df = pd.concat(model_dfs, axis=0).sort_values(by=['roundNumber','date'], ascending=False).reset_index(drop=True)
|
324 |
-
model_df = model_df[model_df['roundNumber'].isin(roundlist)].reset_index(drop=True)
|
325 |
-
model_df['date'] = model_df['date'].dt.date
|
326 |
-
model_df['group'] = model_df['model'].apply(lambda x: project_utils.get_model_group(x))
|
327 |
|
328 |
prjreload = st.sidebar.button('reload config')
|
329 |
if prjreload:
|
330 |
project_utils.reload_project()
|
331 |
if len(model_df)>0:
|
332 |
-
rename_dict = {'corrPercentile': 'corr_pct', 'correlation':'corr', '
|
333 |
model_df.rename(columns=rename_dict, inplace=True)
|
334 |
model_df['corrmmc'] = model_df['corr'] + model_df['mmc']
|
335 |
model_df['corr2mmc'] = model_df['corr'] + 2*model_df['mmc']
|
336 |
model_df['cmavg_pct'] = (model_df['corr_pct'] + model_df['mmc_pct'])/2
|
337 |
model_df['c2mavg_pct'] = (model_df['corr_pct'] + 2*model_df['mmc_pct'])/3
|
338 |
-
ord_cols = ['model','corr', 'corr_pct', 'mmc', 'mmc_pct', 'corrmmc', 'cmavg_pct', 'corr_meta',
|
339 |
model_df = model_df[ord_cols]
|
340 |
-
|
|
|
|
|
|
|
341 |
if show_info:
|
342 |
st.text('list of models being tracked')
|
343 |
st.write(model_dict)
|
344 |
-
# st.write(models)
|
345 |
try:
|
|
|
346 |
st.write(model_df.head(5))
|
347 |
except:
|
348 |
st.write('model data was not retrieved')
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
return None
|
354 |
|
355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
def chart_pxline(data, x, y, color, hover_data=None, x_range=None):
|
357 |
fig = px.line(data, x=x, y=y, color=color, hover_data=hover_data)
|
358 |
fig.update_layout(plot_bgcolor='black', paper_bgcolor='black', font_color='white', height = max_height, margin=dict(l=0, r=10, t=20, b=20))
|
@@ -437,7 +460,7 @@ def histtrend():
|
|
437 |
def model_evaluation():
|
438 |
models = []
|
439 |
model_selection = []
|
440 |
-
model_dict =
|
441 |
mean_scale = [-0.05, 0.1]
|
442 |
count_scale = [1, 50]
|
443 |
sharpe_scale = [-0.2, 3]
|
@@ -652,31 +675,9 @@ def get_stake_graph(data):
|
|
652 |
# roundlist = [i for i in range(latest_round_id, latest_round_id-4, -1]
|
653 |
|
654 |
|
655 |
-
def check_session_state(key
|
656 |
# st.write(data)
|
657 |
-
|
658 |
-
if key in portsel_list:
|
659 |
-
if ('last_opt' not in st.session_state) & (~init):
|
660 |
-
st.session_state['last_opt'] = key
|
661 |
-
if key not in st.session_state:
|
662 |
-
st.session_state[key] = data
|
663 |
-
# st.session_state['last_opt'] = key
|
664 |
-
else:
|
665 |
-
# st.write(key, st.session_state['last_opt'],len(st.session_state[key]))
|
666 |
-
if st.session_state[key] is None:
|
667 |
-
st.session_state[key] = []
|
668 |
-
# st.session_state['last_opt'] = key
|
669 |
-
if data is None:
|
670 |
-
return st.session_state[key]
|
671 |
-
elif (set(data)!=set(st.session_state[key])) & (len(data)>0 & (~init)):
|
672 |
-
# if st.session_state['last_opt'] == key:
|
673 |
-
if(st.session_state['last_opt']==key):
|
674 |
-
st.session_state[key] = data
|
675 |
-
else:
|
676 |
-
if len(st.session_state[key]) ==0:
|
677 |
-
st.session_state[key] = data
|
678 |
-
st.session_state['last_opt'] = key
|
679 |
-
|
680 |
return st.session_state[key]
|
681 |
else:
|
682 |
return None
|
@@ -685,7 +686,7 @@ def check_session_state(key, data, init=False):
|
|
685 |
def stake_overview():
|
686 |
models = []
|
687 |
model_selection = []
|
688 |
-
model_dict =
|
689 |
for k in model_dict.keys():
|
690 |
if model_dict[k] not in models:
|
691 |
models += model_dict[k]
|
@@ -748,176 +749,65 @@ def stake_overview():
|
|
748 |
stake_models = ovdf['model'].tolist()
|
749 |
liveround_stake_df = get_stake_by_liverounds(stake_models)
|
750 |
# st.write(liveround_stake_df)
|
751 |
-
round_view(liveround_stake_df,'live_round_stake')
|
752 |
-
|
753 |
-
|
754 |
-
def set_portolio_control(ct, models ,data):
|
755 |
-
roundmodels = data['model'].unique().tolist()
|
756 |
-
use_models = [m for m in models if m in roundmodels]
|
757 |
-
ct.write(use_models)
|
758 |
-
|
759 |
-
|
760 |
-
# def portfolio_model_selector(models):
|
761 |
-
# st.sidebar.subheader('Portfolio Model Shortlist')
|
762 |
-
# # placeholder = st.sidebar.empty()
|
763 |
-
# text_content = '''
|
764 |
-
# fast model picker by CSV string.
|
765 |
-
# example: "model1, model2, model3"
|
766 |
-
# '''
|
767 |
-
# # port_model_exp = st.sidebar.expander('portfolio model selector', expanded=True)
|
768 |
-
# # with port_model_exp:
|
769 |
-
# # text = placeholder.text_input(label=text_content, key='1')
|
770 |
-
# text = st.sidebar.text_area(label=text_content)
|
771 |
-
# result_models = []
|
772 |
-
# if len(text)>0:
|
773 |
-
# csv_parts = text.split(',')
|
774 |
-
# for s in csv_parts:
|
775 |
-
# m = s.strip()
|
776 |
-
# if m in models:
|
777 |
-
# result_models.append(m)
|
778 |
-
# default_models = list(dict.fromkeys(result_models))
|
779 |
-
# port_model_selection = st.sidebar.multiselect('select models for portfolio shortlist', models, default=default_models)
|
780 |
-
# # selection_opt = st.sidebar.radio('select models for', list(port_model_selection_opt.keys()), index=0, format_func=lambda x: port_model_selection_opt[x])
|
781 |
-
# return port_model_selection
|
782 |
-
|
783 |
-
|
784 |
-
def portfolio_model_selector(models):
|
785 |
-
# placeholder = st.sidebar.empty()
|
786 |
-
selection_opt = st.sidebar.radio('select models for', list(port_model_selection_opt.keys()), index=0, format_func=lambda x: port_model_selection_opt[x], key='pmsel_mulsel')
|
787 |
-
|
788 |
-
text_content = '''
|
789 |
-
fast model picker by CSV string.
|
790 |
-
example: "model1, model2, model3"
|
791 |
-
'''
|
792 |
-
# port_model_exp = st.sidebar.expander('portfolio model selector', expanded=True)
|
793 |
-
# with port_model_exp:
|
794 |
-
# text = placeholder.text_input(label=text_content, key='1')
|
795 |
-
text = st.sidebar.text_area(label=text_content, key='pmsel_txt')
|
796 |
-
result_models = []
|
797 |
-
if len(text)>0:
|
798 |
-
csv_parts = text.split(',')
|
799 |
-
for s in csv_parts:
|
800 |
-
m = s.strip()
|
801 |
-
if m in models:
|
802 |
-
result_models.append(m)
|
803 |
-
default_models = list(dict.fromkeys(result_models))
|
804 |
-
# st.write(default_models)
|
805 |
-
port_model_selection = st.sidebar.multiselect('select models for portfolio shortlist', models, default=default_models)
|
806 |
-
return port_model_selection, selection_opt
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
def portfolio_mgmt():
|
811 |
-
models = []
|
812 |
-
model_selection = []
|
813 |
-
# model_dict = model_data_picker(values=[True, True, True, True, True, True])
|
814 |
-
model_dict = model_data_picker(values=[True, True, True, True, True, True])
|
815 |
-
|
816 |
-
for k in model_dict.keys():
|
817 |
-
if model_dict[k] not in models:
|
818 |
-
models += model_dict[k]
|
819 |
-
# overview_models = models
|
820 |
-
port_models_left = check_session_state('portfolio_left', [], init=True)
|
821 |
-
port_models_right = check_session_state('portfolio_right', [], init=True)
|
822 |
-
|
823 |
-
if os.path.isfile(project_config.DASHBOARD_MODEL_RESULT_FILE) and len(models)>0:
|
824 |
-
port_cts = st.columns(2)
|
825 |
-
# port_models_shortlist = portfolio_model_selector(models)
|
826 |
-
|
827 |
-
# elif port_model_opt=='overview':
|
828 |
-
# if len(port_models_shortlist)==0:
|
829 |
-
#
|
830 |
-
# port_models_shortlist = models
|
831 |
-
# else:
|
832 |
-
# return None
|
833 |
-
data = project_utils.load_data(project_config.DASHBOARD_MODEL_RESULT_FILE)
|
834 |
-
round_data = data[data['model'].isin(models)].drop_duplicates(['model', 'roundNumber'],keep='first').reset_index(drop=True)
|
835 |
-
min_round = int(round_data['roundNumber'].min())
|
836 |
-
max_round = int(round_data['roundNumber'].max())
|
837 |
-
suggest_min_round = max_round - 20
|
838 |
-
if min_round == max_round:
|
839 |
-
min_round = max_round - 20
|
840 |
-
|
841 |
-
round_exp = st.expander('Round Selection', expanded=True)
|
842 |
-
metric_exp = st.expander('Metric Selection', expanded=True)
|
843 |
-
# portmodel_select_exp = st.expander('Portfolio Model Selection', expanded=True)
|
844 |
-
models_overview_exp =st.expander('Portfolio Model Shortlist', expanded=True)
|
845 |
-
with round_exp:
|
846 |
-
min_selectround, max_selectround = st.slider('', min_round, max_round,
|
847 |
-
(suggest_min_round, max_round), 1)
|
848 |
-
round_list = [r for r in range(min_selectround, max_selectround+1)]
|
849 |
-
with metric_exp:
|
850 |
-
defaultlist = ['corr_sharpe', 'mmc_sharpe', 'corr2mmc_sharpe','corr_mean', 'mmc_mean', 'corr2mmc_mean', 'count']
|
851 |
-
select_metrics = st.multiselect('', list(model_eval_opt.keys()),
|
852 |
-
format_func=lambda x: model_eval_opt[x], default=defaultlist)
|
853 |
-
|
854 |
-
round_data = round_data[round_data['roundNumber'].isin(round_list)].reset_index(drop=True)
|
855 |
-
roundmetric_df = get_roundmetric_data(round_data).sort_values(by='corrmmc_sharpe', ascending=False).reset_index(drop=True)
|
856 |
-
roundmodels = roundmetric_df['model'].unique().tolist()
|
857 |
|
858 |
-
|
859 |
-
# port_sel = st.columns(2)
|
860 |
-
# pl = port_sel[0].multiselect('', port_models_shortlist, default=[])
|
861 |
-
port_models_selection, port_opt = portfolio_model_selector(roundmodels)
|
862 |
-
if port_opt=='left':
|
863 |
-
port_models_left = check_session_state('portfolio_left',port_models_selection)
|
864 |
-
elif port_opt=='right':
|
865 |
-
port_models_right = check_session_state('portfolio_right',port_models_selection)
|
866 |
-
|
867 |
-
# port_models_right = portfolio_model_selector_ct(port_sel, roundmodels, c=1)
|
868 |
-
|
869 |
-
# port_models_right = portfolio_model_selector_ct(port_sel[1], port_models_shortlist, '2')
|
870 |
|
871 |
|
872 |
|
873 |
-
|
874 |
-
|
875 |
-
|
|
|
876 |
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
st.dataframe(roundmetric_df[cols], height=max_table_height)
|
881 |
|
882 |
-
# default_models = model_fast_picker(models)
|
883 |
-
# model_selection = st.sidebar.multiselect('select models for chart', models, default=default_models)
|
884 |
|
885 |
|
|
|
|
|
|
|
|
|
886 |
|
887 |
-
|
|
|
|
|
|
|
|
|
|
|
888 |
|
889 |
|
890 |
|
891 |
def show_content():
|
892 |
st.sidebar.header('Dashboard Selection')
|
893 |
-
select_app = st.sidebar.selectbox("", list(app_opt.keys()), index=
|
894 |
if select_app=='performance_overview':
|
895 |
performance_overview()
|
896 |
-
if select_app=='historic_trend':
|
897 |
-
histtrend()
|
898 |
-
if select_app=='data_op':
|
899 |
-
data_operation()
|
900 |
-
if select_app=='model_evaluation':
|
901 |
-
model_evaluation()
|
902 |
if select_app=='stake_overview':
|
903 |
stake_overview()
|
904 |
-
if select_app=='
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
|
909 |
|
910 |
# main body
|
911 |
# various configuration setting
|
912 |
app_opt = {
|
913 |
'performance_overview' : 'Performance Overview',
|
914 |
-
'historic_trend':'Historic Trend',
|
915 |
-
'model_evaluation' : 'Model Evaluation',
|
916 |
'stake_overview': 'Stake Overview',
|
917 |
-
'
|
918 |
-
'data_op':'Data Operation'
|
919 |
}
|
920 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
921 |
tbl_opt = {
|
922 |
'round_result':'Round Results',
|
923 |
'dailyscore_metric':'Daily Score Metrics',
|
@@ -996,13 +886,14 @@ stakeoverview_plot_opt = {
|
|
996 |
'all':'Display all available data'
|
997 |
}
|
998 |
|
999 |
-
|
1000 |
-
|
1001 |
-
'
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
|
|
1006 |
|
1007 |
|
1008 |
|
@@ -1015,6 +906,19 @@ with height_exp:
|
|
1015 |
|
1016 |
st.title('Numerai Dashboard')
|
1017 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
# trying out multi columns
|
1019 |
# col1, col2 = st.columns(2)
|
1020 |
# col1.header('col1')
|
|
|
19 |
import datetime
|
20 |
|
21 |
st.set_page_config(layout='wide')
|
22 |
+
get_benchmark_data = True
|
23 |
+
|
24 |
+
# get_dailyscore = True
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
|
29 |
def sidebar_data_picker():
|
30 |
st.sidebar.subheader('Model Data Picker')
|
|
|
34 |
special_list = st.sidebar.checkbox('model from specific users', value=True)
|
35 |
return top_lb, top_tp3m, top_tp1y, special_list
|
36 |
|
37 |
+
|
38 |
+
# to be removed
|
39 |
+
def model_data_picker_bak(values = None):
|
40 |
if values is None:
|
41 |
values = [True, True, True, True, True, True]
|
42 |
model_dict = {}
|
|
|
66 |
model_dict['mcv'] = project_config.MCV_MODELS + project_config.MCV_NEW_MODELS
|
67 |
return model_dict
|
68 |
|
69 |
+
|
70 |
+
# to be removed
|
71 |
+
def model_fast_picker_bak(models):
|
72 |
text_content = '''
|
73 |
fast model picker by CSV string.
|
74 |
example: "model1, model2, model3"
|
|
|
85 |
|
86 |
|
87 |
|
88 |
+
def default_model_picker():
|
89 |
+
picked_models = {}
|
90 |
+
if os.path.isfile('default_models.json'):
|
91 |
+
default_models_dict = project_utils.load_json('default_models.json')
|
92 |
+
for key in default_models_dict.keys():
|
93 |
+
picked_models[key] = default_models_dict[key]
|
94 |
+
if os.path.isfile('user_models.json'):
|
95 |
+
user_models_dict = project_utils.load_json('user_models.json')
|
96 |
+
for key in user_models_dict.keys():
|
97 |
+
picked_models[key] = user_models_dict[key]
|
98 |
+
return picked_models
|
99 |
+
|
100 |
+
|
101 |
+
def model_fast_picker(models):
|
102 |
+
text_content = '''
|
103 |
+
fast model picker by CSV string.
|
104 |
+
example: "model1, model2, model3"
|
105 |
+
'''
|
106 |
+
text = st.sidebar.text_area(text_content)
|
107 |
+
result_models = []
|
108 |
+
if len(text)>0:
|
109 |
+
csv_parts = text.split(',')
|
110 |
+
for s in csv_parts:
|
111 |
+
m = s.strip()
|
112 |
+
if m not in models:
|
113 |
+
result_models.append(m)
|
114 |
+
return list(dict.fromkeys(result_models))
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
def generate_round_table(data, row_cts, c, r, sortcol='corrmmc'):
|
122 |
# rounds = data
|
123 |
# row_cts[c].write(2*r+c)
|
|
|
245 |
generate_live_round_stake(data, row_cts, c, r)
|
246 |
|
247 |
|
248 |
+
def score_overview():
|
249 |
models = []
|
|
|
|
|
|
|
250 |
data = []
|
251 |
+
benchmark_opt = st.sidebar.checkbox('download default models', value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
+
model_selection = st.empty()
|
254 |
+
if benchmark_opt:
|
255 |
+
model_dict = default_model_picker()
|
256 |
+
for k in model_dict.keys():
|
257 |
+
models += model_dict[k]
|
258 |
+
models = models + model_fast_picker(models)
|
259 |
+
# if len(models)>0:
|
260 |
+
# model_selection = st.sidebar.multiselect('select models', models, default=models)
|
261 |
+
st.sidebar.subheader('Choose a Table View')
|
262 |
+
select_perview = st.sidebar.selectbox("", list(tbl_opt.keys()), index=0, format_func=lambda x: tbl_opt[x])
|
263 |
+
if len(models)>0:
|
264 |
+
model_selection.multiselect('selected models', models, default=models)
|
265 |
|
266 |
|
267 |
def data_operation():
|
268 |
# top_lb, top_tp3m, top_tp1y, special_list = sidebar_data_picker()
|
269 |
latest_round = project_utils.latest_round
|
270 |
models = []
|
271 |
+
benchmark_opt = st.sidebar.checkbox('download default models', value=True)
|
272 |
+
if benchmark_opt:
|
273 |
+
model_dict = default_model_picker()
|
274 |
+
for k in model_dict.keys():
|
275 |
+
models += model_dict[k]
|
276 |
+
models = models + model_fast_picker(models)
|
277 |
+
if len(models)>0:
|
278 |
+
model_selection = st.multiselect('select models', models, default=models)
|
279 |
suggest_min_round = 182 #latest_round-50
|
280 |
min_round, max_round = st.slider('select tournament rounds', 200, latest_round, (suggest_min_round, latest_round), 1)
|
281 |
roundlist = [i for i in range(max_round, min_round-1, -1)]
|
282 |
+
download = st.button('download data of selected models')
|
283 |
st.sidebar.subheader('configuration')
|
284 |
show_info=st.sidebar.checkbox('show background data', value=False)
|
285 |
+
# update_numeraiti_data = st.sidebar.checkbox('update numerati data', value=True)
|
286 |
+
# update_model_data = st.sidebar.checkbox('update model data', value=True)
|
287 |
+
# update_model_data =
|
288 |
|
289 |
+
model_df = get_saved_data()
|
290 |
+
if download and len(model_selection)>0:
|
291 |
+
# if update_model_data:
|
292 |
+
with st.spinner('downloading model round results'):
|
293 |
+
model_df = []
|
294 |
+
model_df = download_model_round_result(model_selection, roundlist, show_info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
prjreload = st.sidebar.button('reload config')
|
297 |
if prjreload:
|
298 |
project_utils.reload_project()
|
299 |
if len(model_df)>0:
|
300 |
+
rename_dict = {'corrPercentile': 'corr_pct', 'correlation':'corr', 'corrWMetamodel':'corr_meta', 'mmcPercentile':'mmc_pct', 'tcPercentile':'tc_pct'}
|
301 |
model_df.rename(columns=rename_dict, inplace=True)
|
302 |
model_df['corrmmc'] = model_df['corr'] + model_df['mmc']
|
303 |
model_df['corr2mmc'] = model_df['corr'] + 2*model_df['mmc']
|
304 |
model_df['cmavg_pct'] = (model_df['corr_pct'] + model_df['mmc_pct'])/2
|
305 |
model_df['c2mavg_pct'] = (model_df['corr_pct'] + 2*model_df['mmc_pct'])/3
|
306 |
+
ord_cols = ['model','corr', 'corr_pct', 'mmc', 'mmc_pct', 'corrmmc', 'cmavg_pct', 'corr_meta', 'tc', 'tc_pct', 'corr2mmc','c2mavg_pct', 'roundNumber']
|
307 |
model_df = model_df[ord_cols]
|
308 |
+
if project_config.SAVE_LOCAL_COPY:
|
309 |
+
project_utils.pickle_data(project_config.MODEL_ROUND_RESULT_FILE, model_df)
|
310 |
+
st.session_state['model_data'] = model_df
|
311 |
+
|
312 |
if show_info:
|
313 |
st.text('list of models being tracked')
|
314 |
st.write(model_dict)
|
|
|
315 |
try:
|
316 |
+
st.write(st.session_state['model_data'].shape)
|
317 |
st.write(model_df.head(5))
|
318 |
except:
|
319 |
st.write('model data was not retrieved')
|
320 |
+
|
321 |
+
if len(model_df)>0:
|
322 |
+
get_performance_data_status(model_df)
|
323 |
+
return None
|
324 |
+
|
325 |
+
def get_saved_data():
|
326 |
+
res = []
|
327 |
+
if os.path.isfile(project_config.MODEL_ROUND_RESULT_FILE):
|
328 |
+
res = project_utils.load_data(project_config.MODEL_ROUND_RESULT_FILE)
|
329 |
+
st.session_state['model_data'] = res
|
330 |
+
return res
|
331 |
+
|
332 |
+
def get_performance_data_status(df):
|
333 |
+
st.sidebar.subheader('model data summary')
|
334 |
+
# latest_date = df['date'][0].strftime(project_config.DATETIME_FORMAT3)
|
335 |
+
model_num = df['model'].nunique()
|
336 |
+
round_num = df['roundNumber'].nunique()
|
337 |
+
latest_round = df['roundNumber'].max()
|
338 |
+
# st.sidebar.text(f'latest date: {latest_date}')
|
339 |
+
st.sidebar.text(f'number of models: {model_num}')
|
340 |
+
st.sidebar.text(f'number of rounds: {round_num}')
|
341 |
+
st.sidebar.text(f'latest round: {latest_round}')
|
342 |
return None
|
343 |
|
344 |
|
345 |
+
def download_model_round_result(models, roundlist, show_info):
|
346 |
+
model_df = []
|
347 |
+
model_dfs = []
|
348 |
+
my_bar = st.progress(0.0)
|
349 |
+
my_bar.progress(0.0)
|
350 |
+
percent_complete = 0.0
|
351 |
+
for i in range(len(models)):
|
352 |
+
message = ''
|
353 |
+
try:
|
354 |
+
model_res = numerapi_utils.daily_submissions_performances_V3(models[i])
|
355 |
+
if len(model_res) > 0:
|
356 |
+
cols = ['model'] + list(model_res[0].keys())
|
357 |
+
model_df = pd.DataFrame(model_res)
|
358 |
+
model_df['model'] = models[i]
|
359 |
+
model_df = model_df[cols]
|
360 |
+
model_dfs.append(model_df)
|
361 |
+
else:
|
362 |
+
message = f'no result found for model {models[i]}'
|
363 |
+
except Exception:
|
364 |
+
# if show_info:
|
365 |
+
# st.write(f'error while getting result for {models[i]}')
|
366 |
+
except_msg = traceback.format_exc()
|
367 |
+
message = f'error while getting result for {models[i]}: {except_msg}'
|
368 |
+
if show_info and len(message) > 0:
|
369 |
+
st.info(message)
|
370 |
+
percent_complete += 1 / len(models)
|
371 |
+
if i == len(models) - 1:
|
372 |
+
percent_complete = 1.0
|
373 |
+
time.sleep(0.1)
|
374 |
+
my_bar.progress(percent_complete)
|
375 |
+
model_df = pd.concat(model_dfs, axis=0).sort_values(by=['roundNumber'], ascending=False).reset_index(drop=True)
|
376 |
+
model_df = model_df[model_df['roundNumber'].isin(roundlist)].reset_index(drop=True)
|
377 |
+
return model_df
|
378 |
+
|
379 |
def chart_pxline(data, x, y, color, hover_data=None, x_range=None):
|
380 |
fig = px.line(data, x=x, y=y, color=color, hover_data=hover_data)
|
381 |
fig.update_layout(plot_bgcolor='black', paper_bgcolor='black', font_color='white', height = max_height, margin=dict(l=0, r=10, t=20, b=20))
|
|
|
460 |
def model_evaluation():
|
461 |
models = []
|
462 |
model_selection = []
|
463 |
+
model_dict = model_data_picker_bak(values=[True, True, True, True, True, True])
|
464 |
mean_scale = [-0.05, 0.1]
|
465 |
count_scale = [1, 50]
|
466 |
sharpe_scale = [-0.2, 3]
|
|
|
675 |
# roundlist = [i for i in range(latest_round_id, latest_round_id-4, -1]
|
676 |
|
677 |
|
678 |
+
def check_session_state(key):
|
679 |
# st.write(data)
|
680 |
+
if key in st.session_state:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
return st.session_state[key]
|
682 |
else:
|
683 |
return None
|
|
|
686 |
def stake_overview():
|
687 |
models = []
|
688 |
model_selection = []
|
689 |
+
model_dict = model_data_picker_bak(values=[True, True, True, True, True, True])
|
690 |
for k in model_dict.keys():
|
691 |
if model_dict[k] not in models:
|
692 |
models += model_dict[k]
|
|
|
749 |
stake_models = ovdf['model'].tolist()
|
750 |
liveround_stake_df = get_stake_by_liverounds(stake_models)
|
751 |
# st.write(liveround_stake_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
|
753 |
+
round_view(liveround_stake_df,'live_round_stake')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
|
755 |
|
756 |
|
757 |
+
def app_setting():
|
758 |
+
pfm_exp = st.expander('Perormance Data Setting', expanded=True)
|
759 |
+
with pfm_exp:
|
760 |
+
pfm_default_model= st.checkbox('download data for default model', value=True)
|
761 |
|
762 |
+
stake_exp = st.expander('stake overview data setting', expanded=True)
|
763 |
+
if st.button('confirm settiong'):
|
764 |
+
st.session_state['pfm_default_model'] = pfm_default_model
|
|
|
765 |
|
|
|
|
|
766 |
|
767 |
|
768 |
+
def performance_overview():
|
769 |
+
select_app = st.sidebar.selectbox("", list(pfm_opt.keys()), index=0, format_func=lambda x: pfm_opt[x])
|
770 |
+
if select_app=='data_op':
|
771 |
+
data_operation()
|
772 |
|
773 |
+
if select_app=='performance_overview':
|
774 |
+
performance_overview()
|
775 |
+
if select_app=='historic_trend':
|
776 |
+
histtrend()
|
777 |
+
if select_app=='model_evaluation':
|
778 |
+
model_evaluation()
|
779 |
|
780 |
|
781 |
|
782 |
def show_content():
|
783 |
st.sidebar.header('Dashboard Selection')
|
784 |
+
select_app = st.sidebar.selectbox("", list(app_opt.keys()), index=0, format_func=lambda x: app_opt[x])
|
785 |
if select_app=='performance_overview':
|
786 |
performance_overview()
|
|
|
|
|
|
|
|
|
|
|
|
|
787 |
if select_app=='stake_overview':
|
788 |
stake_overview()
|
789 |
+
if select_app=='app_setting':
|
790 |
+
app_setting()
|
|
|
|
|
791 |
|
792 |
|
793 |
# main body
|
794 |
# various configuration setting
|
795 |
app_opt = {
|
796 |
'performance_overview' : 'Performance Overview',
|
|
|
|
|
797 |
'stake_overview': 'Stake Overview',
|
798 |
+
'app_setting':''
|
|
|
799 |
}
|
800 |
|
801 |
+
|
802 |
+
pfm_opt = {
|
803 |
+
'data_op': 'Download Score Data',
|
804 |
+
'liveround_view': 'Live Round Overview',
|
805 |
+
'historic_trend': 'Historic Trend',
|
806 |
+
'model_evaluation': 'Model Evaluation',
|
807 |
+
}
|
808 |
+
|
809 |
+
|
810 |
+
|
811 |
tbl_opt = {
|
812 |
'round_result':'Round Results',
|
813 |
'dailyscore_metric':'Daily Score Metrics',
|
|
|
886 |
'all':'Display all available data'
|
887 |
}
|
888 |
|
889 |
+
def show_session_status_info():
|
890 |
+
# 'raw_performance_data'
|
891 |
+
key1 = 'model_data'
|
892 |
+
if check_session_state(key1) is None:
|
893 |
+
st.write(f'{key1} is None')
|
894 |
+
else:
|
895 |
+
st.write(f'{key1} shape is {st.session_state[key1].shape}')
|
896 |
+
pass
|
897 |
|
898 |
|
899 |
|
|
|
906 |
|
907 |
st.title('Numerai Dashboard')
|
908 |
|
909 |
+
# key = 'pfm_default_model'
|
910 |
+
# if check_session_state('pfm_default_model') is None:
|
911 |
+
# st.write('set value')
|
912 |
+
# st.session_state['pfm_default_model'] = True
|
913 |
+
# else:
|
914 |
+
# st.write('use set value')
|
915 |
+
#
|
916 |
+
# st.write(st.session_state)
|
917 |
+
|
918 |
+
df = get_saved_data()
|
919 |
+
show_session_status_info()
|
920 |
+
# st.write(f'{key} is {chkval}')
|
921 |
+
|
922 |
# trying out multi columns
|
923 |
# col1, col2 = st.columns(2)
|
924 |
# col1.header('col1')
|
project_tools/numerapi_utils.py
CHANGED
@@ -175,6 +175,47 @@ def daily_submissions_performances(username: str) -> List[Dict]:
|
|
175 |
return performances
|
176 |
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
|
180 |
|
|
|
175 |
return performances
|
176 |
|
177 |
|
178 |
+
def daily_submissions_performances_V3(modelname: str) -> List[Dict]:
|
179 |
+
query = """
|
180 |
+
query($modelName: String!) {
|
181 |
+
v3UserProfile(modelName: $modelName) {
|
182 |
+
roundModelPerformances{
|
183 |
+
roundNumber
|
184 |
+
roundResolveTime
|
185 |
+
corr
|
186 |
+
corrPercentile
|
187 |
+
mmc
|
188 |
+
mmcMultiplier
|
189 |
+
mmcPercentile
|
190 |
+
tc
|
191 |
+
tcPercentile
|
192 |
+
corrWMetamodel
|
193 |
+
payout
|
194 |
+
roundResolved
|
195 |
+
roundResolveTime
|
196 |
+
corrMultiplier
|
197 |
+
mmcMultiplier
|
198 |
+
selectedStakeValue
|
199 |
+
}
|
200 |
+
stakeValue
|
201 |
+
nmrStaked
|
202 |
+
}
|
203 |
+
}
|
204 |
+
"""
|
205 |
+
arguments = {'modelName': modelname}
|
206 |
+
data = napi.raw_query(query, arguments)['data']['v3UserProfile']
|
207 |
+
performances = data['roundModelPerformances']
|
208 |
+
# convert strings to python objects
|
209 |
+
for perf in performances:
|
210 |
+
utils.replace(perf, "date", utils.parse_datetime_string)
|
211 |
+
# remove useless items
|
212 |
+
performances = [p for p in performances
|
213 |
+
if any([p['corr'], p['tc'], p['mmc']])]
|
214 |
+
return performances
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
|
220 |
|
221 |
|
project_tools/project_config.py
CHANGED
@@ -5,7 +5,19 @@ sys.path.append(os.path.dirname(os.getcwd()))
|
|
5 |
DATETIME_FORMAT1 = '%Y%m%d%H%M'
|
6 |
DATETIME_FORMAT2 = '%Y/%m/%d %H:%M'
|
7 |
DATETIME_FORMAT3 = '%Y-%m-%d'
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
MODEL_NAMES = ['yxbot', 'yxbot2', 'sforest_baihu', 'stree_qinlong', 'flyingbus_mcv6', 'starry_night','fish_and_chips', 'rogue_planet', 'three_body_problem', 'grinning_cat', 'schrodingers_cat', 'omega_weapon', 'ifirit','dark_bahamut', 'wen_score', 'qinlong', 'baihu','marlboro', 'hell_cerberus', 'fuxi', 'roci_fuxi', 'kupo_mcv7', 'yxbot_mcv2', 'yxbot_mcv10']
|
10 |
|
11 |
|
@@ -30,14 +42,6 @@ IAAI_MODELS = ['ia_ai', 'the_aijoe4','i_like_the_coin_08', 'i_like_the_coin_09'
|
|
30 |
|
31 |
RESTRADE_MODELS = ['restrading', 'restrading2', 'restrading3', 'restrading4', 'restrading5', 'restrading6', 'restrading7', 'restrading8', 'restrading9']
|
32 |
|
33 |
-
|
34 |
-
BENCHMARK_MODELS = ['integration_test', 'i_like_the_coin_01'] #'budbot_7'] #'integration_test_7'
|
35 |
MCV_MODELS = ['mcv', 'mcv2', 'mcv3', 'mcv4', 'mcv5','mcv6','mcv7','mcv8','mcv9','mcv10','mcv11','mcv12','mcv13']
|
36 |
-
|
37 |
MCV_NEW_MODELS = ['mcv14', 'mcv15', 'mcv16', 'mcv17', 'mcv18', 'mcv19', 'mcv20', 'mcv21', 'mcv22', 'mcv23', 'mcv24', 'mcv25', 'mcv26', 'mcv27', 'mcv28', 'mcv29', 'mcv30', 'mcv31', 'mcv32', 'mcv33', 'mcv34', 'mcv35', 'mcv36', 'mcv37', 'mcv38', 'mcv39', 'mcv40', 'mcv41', 'mcv42', 'mcv43', 'mcv44', 'mcv45', 'mcv46', 'mcv47', 'mcv48', 'mcv49', 'mcv50']
|
38 |
|
39 |
-
|
40 |
-
DASHBOARD_MODEL_RESULT_FILE = '../feature_data/dashboard_model_result.pkl'
|
41 |
-
NUMERATI_URL = 'https://raw.githubusercontent.com/woobe/numerati/master/data.csv'
|
42 |
-
NUMERATI_FILE = '../feature_data/numerati_data.pkl'
|
43 |
-
FEATURE_PATH = '../feature_data/'
|
|
|
5 |
DATETIME_FORMAT1 = '%Y%m%d%H%M'
|
6 |
DATETIME_FORMAT2 = '%Y/%m/%d %H:%M'
|
7 |
DATETIME_FORMAT3 = '%Y-%m-%d'
|
8 |
+
SAVE_LOCAL_COPY = True
|
9 |
|
10 |
+
BENCHMARK_MODELS = ['integration_test', 'integration_test_7'] #'budbot_7'] #'integration_test_7'
|
11 |
+
MODEL_ROUND_RESULT_FILE = '../feature_data/model_round_result.pkl'
|
12 |
+
MODEL_DAILY_RESULT_FILE = '../feature_data/model_daily_result.pkl'
|
13 |
+
|
14 |
+
NUMERATI_URL = 'https://raw.githubusercontent.com/woobe/numerati/master/data.csv'
|
15 |
+
NUMERATI_FILE = '../feature_data/numerati_data.pkl'
|
16 |
+
FEATURE_PATH = '../feature_data/'
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
# to be discarded
|
21 |
MODEL_NAMES = ['yxbot', 'yxbot2', 'sforest_baihu', 'stree_qinlong', 'flyingbus_mcv6', 'starry_night','fish_and_chips', 'rogue_planet', 'three_body_problem', 'grinning_cat', 'schrodingers_cat', 'omega_weapon', 'ifirit','dark_bahamut', 'wen_score', 'qinlong', 'baihu','marlboro', 'hell_cerberus', 'fuxi', 'roci_fuxi', 'kupo_mcv7', 'yxbot_mcv2', 'yxbot_mcv10']
|
22 |
|
23 |
|
|
|
42 |
|
43 |
RESTRADE_MODELS = ['restrading', 'restrading2', 'restrading3', 'restrading4', 'restrading5', 'restrading6', 'restrading7', 'restrading8', 'restrading9']
|
44 |
|
|
|
|
|
45 |
MCV_MODELS = ['mcv', 'mcv2', 'mcv3', 'mcv4', 'mcv5','mcv6','mcv7','mcv8','mcv9','mcv10','mcv11','mcv12','mcv13']
|
|
|
46 |
MCV_NEW_MODELS = ['mcv14', 'mcv15', 'mcv16', 'mcv17', 'mcv18', 'mcv19', 'mcv20', 'mcv21', 'mcv22', 'mcv23', 'mcv24', 'mcv25', 'mcv26', 'mcv27', 'mcv28', 'mcv29', 'mcv30', 'mcv31', 'mcv32', 'mcv33', 'mcv34', 'mcv35', 'mcv36', 'mcv37', 'mcv38', 'mcv39', 'mcv40', 'mcv41', 'mcv42', 'mcv43', 'mcv44', 'mcv45', 'mcv46', 'mcv47', 'mcv48', 'mcv49', 'mcv50']
|
47 |
|
|
|
|
|
|
|
|
|
|
project_tools/project_utils.py
CHANGED
@@ -660,6 +660,9 @@ def series_reverse_cumsum(a):
|
|
660 |
return a.fillna(0).values[::-1].cumsum()[::-1]
|
661 |
|
662 |
|
|
|
|
|
|
|
663 |
|
664 |
#### NumerDash specific functions ###
|
665 |
|
|
|
660 |
return a.fillna(0).values[::-1].cumsum()[::-1]
|
661 |
|
662 |
|
663 |
+
def get_array_sharpe(values):
|
664 |
+
return values.mean()/values.std()
|
665 |
+
|
666 |
|
667 |
#### NumerDash specific functions ###
|
668 |
|