Spaces:
Runtime error
Runtime error
simple commit with util codes
Browse files- app.py +2 -0
- project_tools/__init__.py +0 -0
- project_tools/numerapi_utils.py +414 -0
- project_tools/project_config.py +47 -0
- project_tools/project_utils.py +813 -0
app.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.title('Numerai Dashboard')
|
project_tools/__init__.py
ADDED
File without changes
|
project_tools/numerapi_utils.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numerapi
|
2 |
+
from numerapi import utils
|
3 |
+
from project_tools import project_config, project_utils
|
4 |
+
from typing import List, Dict
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
napi = numerapi.NumerAPI()
|
9 |
+
|
10 |
+
|
11 |
+
# def get_round
|
12 |
+
|
13 |
+
|
14 |
+
# depreciated
|
15 |
+
# def get_model_history(model):
|
16 |
+
# res = napi.daily_user_performances(model)
|
17 |
+
# res = pd.DataFrame.from_dict(res)
|
18 |
+
# res['payoutPending'] = res['payoutPending'].astype(np.float64)
|
19 |
+
# res['payoutSettled'] = res['payoutSettled'].astype(np.float64)
|
20 |
+
# res['stakeValue'] = res['stakeValue'].astype(np.float64)
|
21 |
+
# res['deltaRatio'] = res['payoutPending'] / res['stakeValue']
|
22 |
+
# res['realised_pl'] = project_utils.series_reverse_cumsum(res['payoutSettled'])
|
23 |
+
# res['floating_pl'] = project_utils.series_reverse_cumsum(res['payoutPending']) - res['realised_pl']
|
24 |
+
# res['current_stake'] = res['stakeValue'] - res['floating_pl']
|
25 |
+
# rename_dict = {'stakeValue':'floating_stake'}
|
26 |
+
# res = res.rename(columns=rename_dict)
|
27 |
+
# # res['equity'] = res['stakeValue'] + res['floating_pl']
|
28 |
+
# # cols = res.columns.tolist()
|
29 |
+
# # res = res[['model'] + cols]
|
30 |
+
#
|
31 |
+
# res['model'] = model
|
32 |
+
# cols = ['model', 'date', 'current_stake', 'floating_stake', 'payoutPending', 'floating_pl', 'realised_pl']
|
33 |
+
# res = res[cols]
|
34 |
+
# return res
|
35 |
+
|
36 |
+
|
37 |
+
def get_portfolio_overview(models, onlylatest=True):
|
38 |
+
res_df = []
|
39 |
+
for m in models:
|
40 |
+
# try:
|
41 |
+
print(f'extracting information for model {m}')
|
42 |
+
if onlylatest:
|
43 |
+
mdf = get_model_history_v3(m).loc[0:0]
|
44 |
+
else:
|
45 |
+
mdf = get_model_history_v3(m)
|
46 |
+
res_df.append(mdf)
|
47 |
+
# except:
|
48 |
+
# print(f'no information for model {m} is available')
|
49 |
+
if len(res_df)>0:
|
50 |
+
res_df = pd.concat(res_df, axis=0)
|
51 |
+
# res_df['date'] = res_df['date'].dt.date
|
52 |
+
if onlylatest:
|
53 |
+
return res_df.sort_values(by='floating_pl', ascending=False).reset_index(drop=True)
|
54 |
+
else:
|
55 |
+
return res_df.reset_index(drop=True)
|
56 |
+
else:
|
57 |
+
return None
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
def get_competitions(tournament=8):
|
65 |
+
"""Retrieves information about all competitions
|
66 |
+
Args:
|
67 |
+
tournament (int, optional): ID of the tournament, defaults to 8
|
68 |
+
-- DEPRECATED there is only one tournament nowadays
|
69 |
+
Returns:
|
70 |
+
list of dicts: list of rounds
|
71 |
+
Each round's dict contains the following items:
|
72 |
+
* datasetId (`str`)
|
73 |
+
* number (`int`)
|
74 |
+
* openTime (`datetime`)
|
75 |
+
* resolveTime (`datetime`)
|
76 |
+
* participants (`int`): number of participants
|
77 |
+
* prizePoolNmr (`decimal.Decimal`)
|
78 |
+
* prizePoolUsd (`decimal.Decimal`)
|
79 |
+
* resolvedGeneral (`bool`)
|
80 |
+
* resolvedStaking (`bool`)
|
81 |
+
* ruleset (`string`)
|
82 |
+
Example:
|
83 |
+
>>> NumerAPI().get_competitions()
|
84 |
+
[
|
85 |
+
{'datasetId': '59a70840ca11173c8b2906ac',
|
86 |
+
'number': 71,
|
87 |
+
'openTime': datetime.datetime(2017, 8, 31, 0, 0),
|
88 |
+
'resolveTime': datetime.datetime(2017, 9, 27, 21, 0),
|
89 |
+
'participants': 1287,
|
90 |
+
'prizePoolNmr': Decimal('0.00'),
|
91 |
+
'prizePoolUsd': Decimal('6000.00'),
|
92 |
+
'resolvedGeneral': True,
|
93 |
+
'resolvedStaking': True,
|
94 |
+
'ruleset': 'p_auction'
|
95 |
+
},
|
96 |
+
..
|
97 |
+
]
|
98 |
+
"""
|
99 |
+
# self.logger.info("getting rounds...")
|
100 |
+
|
101 |
+
query = '''
|
102 |
+
query($tournament: Int!) {
|
103 |
+
rounds(tournament: $tournament) {
|
104 |
+
number
|
105 |
+
resolveTime
|
106 |
+
openTime
|
107 |
+
resolvedGeneral
|
108 |
+
resolvedStaking
|
109 |
+
}
|
110 |
+
}
|
111 |
+
'''
|
112 |
+
arguments = {'tournament': tournament}
|
113 |
+
result = napi.raw_query(query, arguments)
|
114 |
+
rounds = result['data']['rounds']
|
115 |
+
# convert datetime strings to datetime.datetime objects
|
116 |
+
for r in rounds:
|
117 |
+
utils.replace(r, "openTime", utils.parse_datetime_string)
|
118 |
+
utils.replace(r, "resolveTime", utils.parse_datetime_string)
|
119 |
+
utils.replace(r, "prizePoolNmr", utils.parse_float_string)
|
120 |
+
utils.replace(r, "prizePoolUsd", utils.parse_float_string)
|
121 |
+
return rounds
|
122 |
+
|
123 |
+
|
124 |
+
def daily_submissions_performances(username: str) -> List[Dict]:
|
125 |
+
"""Fetch daily performance of a user's submissions.
|
126 |
+
Args:
|
127 |
+
username (str)
|
128 |
+
Returns:
|
129 |
+
list of dicts: list of daily submission performance entries
|
130 |
+
For each entry in the list, there is a dict with the following
|
131 |
+
content:
|
132 |
+
* date (`datetime`)
|
133 |
+
* correlation (`float`)
|
134 |
+
* roundNumber (`int`)
|
135 |
+
* mmc (`float`): metamodel contribution
|
136 |
+
* fnc (`float`): feature neutral correlation
|
137 |
+
* correlationWithMetamodel (`float`)
|
138 |
+
Example:
|
139 |
+
>>> api = NumerAPI()
|
140 |
+
>>> api.daily_user_performances("uuazed")
|
141 |
+
[{'roundNumber': 181,
|
142 |
+
'correlation': -0.011765912,
|
143 |
+
'date': datetime.datetime(2019, 10, 16, 0, 0),
|
144 |
+
'mmc': 0.3,
|
145 |
+
'fnc': 0.1,
|
146 |
+
'correlationWithMetamodel': 0.87},
|
147 |
+
...
|
148 |
+
]
|
149 |
+
"""
|
150 |
+
query = """
|
151 |
+
query($username: String!) {
|
152 |
+
v2UserProfile(username: $username) {
|
153 |
+
dailySubmissionPerformances {
|
154 |
+
date
|
155 |
+
correlation
|
156 |
+
corrPercentile
|
157 |
+
roundNumber
|
158 |
+
mmc
|
159 |
+
mmcPercentile
|
160 |
+
fnc
|
161 |
+
fncPercentile
|
162 |
+
correlationWithMetamodel
|
163 |
+
}
|
164 |
+
}
|
165 |
+
}
|
166 |
+
"""
|
167 |
+
arguments = {'username': username}
|
168 |
+
data = napi.raw_query(query, arguments)['data']['v2UserProfile']
|
169 |
+
performances = data['dailySubmissionPerformances']
|
170 |
+
# convert strings to python objects
|
171 |
+
for perf in performances:
|
172 |
+
utils.replace(perf, "date", utils.parse_datetime_string)
|
173 |
+
# remove useless items
|
174 |
+
performances = [p for p in performances
|
175 |
+
if any([p['correlation'], p['fnc'], p['mmc']])]
|
176 |
+
return performances
|
177 |
+
|
178 |
+
|
179 |
+
def daily_submissions_performances_V3(modelname: str) -> List[Dict]:
|
180 |
+
query = """
|
181 |
+
query($modelName: String!) {
|
182 |
+
v3UserProfile(modelName: $modelName) {
|
183 |
+
roundModelPerformances{
|
184 |
+
roundNumber
|
185 |
+
roundResolveTime
|
186 |
+
corr
|
187 |
+
corrPercentile
|
188 |
+
mmc
|
189 |
+
mmcMultiplier
|
190 |
+
mmcPercentile
|
191 |
+
tc
|
192 |
+
tcPercentile
|
193 |
+
tcMultiplier
|
194 |
+
fncV3
|
195 |
+
fncV3Percentile
|
196 |
+
corrWMetamodel
|
197 |
+
payout
|
198 |
+
roundResolved
|
199 |
+
roundResolveTime
|
200 |
+
corrMultiplier
|
201 |
+
mmcMultiplier
|
202 |
+
selectedStakeValue
|
203 |
+
}
|
204 |
+
stakeValue
|
205 |
+
nmrStaked
|
206 |
+
}
|
207 |
+
}
|
208 |
+
"""
|
209 |
+
arguments = {'modelName': modelname}
|
210 |
+
data = napi.raw_query(query, arguments)['data']['v3UserProfile']
|
211 |
+
performances = data['roundModelPerformances']
|
212 |
+
# convert strings to python objects
|
213 |
+
for perf in performances:
|
214 |
+
utils.replace(perf, "date", utils.parse_datetime_string)
|
215 |
+
# remove useless items
|
216 |
+
performances = [p for p in performances
|
217 |
+
if any([p['corr'], p['tc'], p['mmc']])]
|
218 |
+
return performances
|
219 |
+
|
220 |
+
|
221 |
+
def get_lb_models(limit=20000, offset=0):
|
222 |
+
query = """
|
223 |
+
query($limit: Int, $offset: Int){
|
224 |
+
v2Leaderboard(limit:$limit, offset:$offset){
|
225 |
+
username
|
226 |
+
}
|
227 |
+
}
|
228 |
+
"""
|
229 |
+
arguments = {'limit':limit, 'offset':offset}
|
230 |
+
data = napi.raw_query(query, arguments)['data']['v2Leaderboard']
|
231 |
+
model_list = [i['username'] for i in data]
|
232 |
+
return model_list
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
def get_round_model_performance(roundNumber: int, model: str):
|
237 |
+
query = """
|
238 |
+
query($roundNumber: Int!, $username: String!) {
|
239 |
+
roundSubmissionPerformance(roundNumber: $roundNumber, username: $username) {
|
240 |
+
corrMultiplier
|
241 |
+
mmcMultiplier
|
242 |
+
roundDailyPerformances{
|
243 |
+
correlation
|
244 |
+
mmc
|
245 |
+
corrPercentile
|
246 |
+
mmcPercentile
|
247 |
+
payoutPending
|
248 |
+
}
|
249 |
+
selectedStakeValue
|
250 |
+
}
|
251 |
+
}
|
252 |
+
"""
|
253 |
+
arguments = {'roundNumber': roundNumber,'username': model}
|
254 |
+
data = napi.raw_query(query, arguments)['data']['roundSubmissionPerformance']
|
255 |
+
latest_performance = data['roundDailyPerformances'][-1] #[-1] ### issue with order
|
256 |
+
res = {}
|
257 |
+
res['model'] = model
|
258 |
+
res['roundNumber'] = roundNumber
|
259 |
+
res['corrMultiplier'] = data['corrMultiplier']
|
260 |
+
res['mmcMultiplier'] = data['mmcMultiplier']
|
261 |
+
res['selectedStakeValue'] = data['selectedStakeValue']
|
262 |
+
for key in latest_performance.keys():
|
263 |
+
res[key] = latest_performance[key]
|
264 |
+
return res
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
def get_user_profile(username: str) -> List[Dict]:
|
270 |
+
"""Fetch daily performance of a user's submissions.
|
271 |
+
Args:
|
272 |
+
username (str)
|
273 |
+
Returns:
|
274 |
+
list of dicts: list of daily submission performance entries
|
275 |
+
For each entry in the list, there is a dict with the following
|
276 |
+
content:
|
277 |
+
* date (`datetime`)
|
278 |
+
* correlation (`float`)
|
279 |
+
* roundNumber (`int`)
|
280 |
+
* mmc (`float`): metamodel contribution
|
281 |
+
* fnc (`float`): feature neutral correlation
|
282 |
+
* correlationWithMetamodel (`float`)
|
283 |
+
Example:
|
284 |
+
>>> api = NumerAPI()
|
285 |
+
>>> api.daily_user_performances("uuazed")
|
286 |
+
[{'roundNumber': 181,
|
287 |
+
'correlation': -0.011765912,
|
288 |
+
'date': datetime.datetime(2019, 10, 16, 0, 0),
|
289 |
+
'mmc': 0.3,
|
290 |
+
'fnc': 0.1,
|
291 |
+
'correlationWithMetamodel': 0.87},
|
292 |
+
...
|
293 |
+
]
|
294 |
+
"""
|
295 |
+
query = """
|
296 |
+
query($username: String!) {
|
297 |
+
v2UserProfile(username: $username) {
|
298 |
+
dailySubmissionPerformances {
|
299 |
+
date
|
300 |
+
correlation
|
301 |
+
corrPercentile
|
302 |
+
roundNumber
|
303 |
+
mmc
|
304 |
+
mmcPercentile
|
305 |
+
fnc
|
306 |
+
fncPercentile
|
307 |
+
correlationWithMetamodel
|
308 |
+
}
|
309 |
+
}
|
310 |
+
}
|
311 |
+
"""
|
312 |
+
arguments = {'username': username}
|
313 |
+
data = napi.raw_query(query, arguments)['data']#['v2UserProfile']
|
314 |
+
# performances = data['dailySubmissionPerformances']
|
315 |
+
# # convert strings to python objects
|
316 |
+
# for perf in performances:
|
317 |
+
# utils.replace(perf, "date", utils.parse_datetime_string)
|
318 |
+
# # remove useless items
|
319 |
+
# performances = [p for p in performances
|
320 |
+
# if any([p['correlation'], p['fnc'], p['mmc']])]
|
321 |
+
return data
|
322 |
+
|
323 |
+
|
324 |
+
def download_dataset(filename: str, dest_path: str = None,
|
325 |
+
round_num: int = None) -> None:
|
326 |
+
""" Download specified file for the current active round.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
filename (str): file to be downloaded
|
330 |
+
dest_path (str, optional): complate path where the file should be
|
331 |
+
stored, defaults to the same name as the source file
|
332 |
+
round_num (int, optional): tournament round you are interested in.
|
333 |
+
defaults to the current round
|
334 |
+
tournament (int, optional): ID of the tournament, defaults to 8
|
335 |
+
|
336 |
+
Example:
|
337 |
+
>>> filenames = NumerAPI().list_datasets()
|
338 |
+
>>> NumerAPI().download_dataset(filenames[0]}")
|
339 |
+
"""
|
340 |
+
if dest_path is None:
|
341 |
+
dest_path = filename
|
342 |
+
|
343 |
+
query = """
|
344 |
+
query ($filename: String!
|
345 |
+
$round: Int) {
|
346 |
+
dataset(filename: $filename
|
347 |
+
round: $round)
|
348 |
+
}
|
349 |
+
"""
|
350 |
+
args = {'filename': filename, "round": round_num}
|
351 |
+
|
352 |
+
dataset_url = napi.raw_query(query, args)['data']['dataset']
|
353 |
+
utils.download_file(dataset_url, dest_path, show_progress_bars=True)
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
# function using V3UserProfile
|
358 |
+
|
359 |
+
def model_payout_history(model):
|
360 |
+
napi = numerapi.NumerAPI()
|
361 |
+
query = """
|
362 |
+
query($model: String!) {
|
363 |
+
v3UserProfile(modelName: $model) {
|
364 |
+
roundModelPerformances{
|
365 |
+
payout
|
366 |
+
roundNumber
|
367 |
+
roundResolved
|
368 |
+
roundResolveTime
|
369 |
+
corrMultiplier
|
370 |
+
mmcMultiplier
|
371 |
+
selectedStakeValue
|
372 |
+
}
|
373 |
+
stakeValue
|
374 |
+
nmrStaked
|
375 |
+
}
|
376 |
+
}
|
377 |
+
"""
|
378 |
+
arguments = {'model': model}
|
379 |
+
payout_info = napi.raw_query(query, arguments)['data']['v3UserProfile']['roundModelPerformances']
|
380 |
+
payout_info = pd.DataFrame.from_dict(payout_info)
|
381 |
+
payout_info = payout_info[~pd.isnull(payout_info['payout'])].reset_index(drop=True)
|
382 |
+
return payout_info
|
383 |
+
|
384 |
+
|
385 |
+
def get_model_history_v3(model):
|
386 |
+
res = model_payout_history(model)
|
387 |
+
res = pd.DataFrame.from_dict(res)
|
388 |
+
res['payout'] = res['payout'].astype(np.float64)
|
389 |
+
res['current_stake'] = res['selectedStakeValue'].astype(np.float64)
|
390 |
+
res['payout_cumsum'] = project_utils.series_reverse_cumsum(res['payout'])
|
391 |
+
res['date'] = pd.to_datetime(res['roundResolveTime']).dt.date
|
392 |
+
|
393 |
+
res['realised_pl'] = res['payout_cumsum']
|
394 |
+
latest_realised_pl = res[res['roundResolved'] == True]['payout_cumsum'].values[0]
|
395 |
+
res.loc[res['roundResolved'] == False, 'realised_pl'] = latest_realised_pl
|
396 |
+
|
397 |
+
res['floating_pl'] = 0
|
398 |
+
payoutPending_values = res[res['roundResolved'] == False]['payout'].values
|
399 |
+
payoutPending_cumsum = payoutPending_values[::-1].cumsum()[::-1]
|
400 |
+
res.loc[res['roundResolved'] == False, 'floating_pl'] = payoutPending_cumsum
|
401 |
+
|
402 |
+
res['model'] = model
|
403 |
+
# res['floating_pl'] = res['current_stake'] + res['payoutPending']
|
404 |
+
res['floating_stake'] = res['current_stake'] + res['floating_pl']
|
405 |
+
cols = ['model', 'date', 'current_stake', 'floating_stake', 'payout', 'floating_pl', 'realised_pl', 'roundResolved',
|
406 |
+
'roundNumber']
|
407 |
+
res = res[cols]
|
408 |
+
return res
|
409 |
+
|
410 |
+
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
|
project_tools/project_config.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(os.path.dirname(os.getcwd()))
|
4 |
+
|
5 |
+
DATETIME_FORMAT1 = '%Y%m%d%H%M'
|
6 |
+
DATETIME_FORMAT2 = '%Y/%m/%d %H:%M'
|
7 |
+
DATETIME_FORMAT3 = '%Y-%m-%d'
|
8 |
+
SAVE_LOCAL_COPY = True
|
9 |
+
|
10 |
+
BENCHMARK_MODELS = ['integration_test', 'integration_test_7'] #'budbot_7'] #'integration_test_7'
|
11 |
+
MODEL_ROUND_RESULT_FILE = '../feature_data/model_round_result.pkl'
|
12 |
+
MODEL_DAILY_RESULT_FILE = '../feature_data/model_daily_result.pkl'
|
13 |
+
|
14 |
+
NUMERATI_URL = 'https://raw.githubusercontent.com/woobe/numerati/master/data.csv'
|
15 |
+
NUMERATI_FILE = '../feature_data/numerati_data.pkl'
|
16 |
+
FEATURE_PATH = '../feature_data/'
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
# to be discarded
|
21 |
+
MODEL_NAMES = ['yxbot', 'yxbot2', 'sforest_baihu', 'stree_qinlong', 'flyingbus_mcv6', 'starry_night','fish_and_chips', 'rogue_planet', 'three_body_problem', 'grinning_cat', 'schrodingers_cat', 'omega_weapon', 'ifirit','dark_bahamut', 'wen_score', 'qinlong', 'baihu','marlboro', 'hell_cerberus', 'fuxi', 'roci_fuxi', 'kupo_mcv7', 'yxbot_mcv2', 'yxbot_mcv10']
|
22 |
+
|
23 |
+
|
24 |
+
NEW_MODEL_NAMES = ['yxbot3_m15', 'yxbot4_m23', 'yxbot5', 'yxbot6_m16', 'yxbot7_m17', 'yxbot_a10b8', 'yxbot9_m24', 'yxbot_a10', 'yxbot_a10xu', 'yxbot_a10bk','yxbot_a11', 'yxbot_a12', 'yxbot_ultima_weapon', 'yxbot_valkyrie', 'yxbot_bearmate', 'yxbot_dracula','yxbot_a13', 'yxbot_a14', 'yxbot15_zhuque', 'yxbot_redhare', 'yxbot_a15', 'yxbot18_m25', 'yxbot11_x302']
|
25 |
+
|
26 |
+
# flyingbus
|
27 |
+
|
28 |
+
TOP_LB = ['mdl3', 'nescience', 'sapphirescipionyx','quantaquetzalcoatlus', 'anna13', 'mercuryai', 'uuazed6', 'rosetta', 'sinookas']
|
29 |
+
|
30 |
+
|
31 |
+
TP3M = ['ageonsen', 'davebaty', 'wallingford_nut', 'filipstefano2', 'davat6', 'lions', 'wsw', 'lottery_of_babylon', 'kup_choy_n', 'pinky_and_the_brain']
|
32 |
+
|
33 |
+
|
34 |
+
TP1Y = ['hiryuu', 'victoria', 'benben11', 'usigma7', 'crystal_sphere', 'era__mix__2000', 'rgb_alpha', 'smokh', 'shoukaku', 'stables', 'deepnum', 'botarai', 'zuikaku', 'kond']
|
35 |
+
|
36 |
+
|
37 |
+
ARBITRAGE_MODELS = ['arbitrage', 'arbitrage2', 'arbitrage3', 'arbitrage4', 'leverage', 'leverage2', 'leverage3', 'culebracapital', 'culebracapital2', 'culebracapital3']
|
38 |
+
|
39 |
+
|
40 |
+
IAAI_MODELS = ['ia_ai', 'the_aijoe4','i_like_the_coin_08', 'i_like_the_coin_09', 'i_like_the_coin_10']
|
41 |
+
|
42 |
+
|
43 |
+
RESTRADE_MODELS = ['restrading', 'restrading2', 'restrading3', 'restrading4', 'restrading5', 'restrading6', 'restrading7', 'restrading8', 'restrading9']
|
44 |
+
|
45 |
+
MCV_MODELS = ['mcv', 'mcv2', 'mcv3', 'mcv4', 'mcv5','mcv6','mcv7','mcv8','mcv9','mcv10','mcv11','mcv12','mcv13']
|
46 |
+
MCV_NEW_MODELS = ['mcv14', 'mcv15', 'mcv16', 'mcv17', 'mcv18', 'mcv19', 'mcv20', 'mcv21', 'mcv22', 'mcv23', 'mcv24', 'mcv25', 'mcv26', 'mcv27', 'mcv28', 'mcv29', 'mcv30', 'mcv31', 'mcv32', 'mcv33', 'mcv34', 'mcv35', 'mcv36', 'mcv37', 'mcv38', 'mcv39', 'mcv40', 'mcv41', 'mcv42', 'mcv43', 'mcv44', 'mcv45', 'mcv46', 'mcv47', 'mcv48', 'mcv49', 'mcv50']
|
47 |
+
|
project_tools/project_utils.py
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import time
|
6 |
+
from contextlib import contextmanager
|
7 |
+
from importlib import reload
|
8 |
+
import re
|
9 |
+
from project_tools import project_config, project_utils, numerapi_utils
|
10 |
+
import glob
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import seaborn as sns
|
13 |
+
from random import randint, random
|
14 |
+
import itertools
|
15 |
+
import scipy
|
16 |
+
from scipy.stats import ks_2samp
|
17 |
+
from sklearn.metrics import log_loss, roc_auc_score, accuracy_score, mean_squared_error
|
18 |
+
from sklearn.preprocessing import MinMaxScaler, StandardScaler
|
19 |
+
from sklearn.pipeline import make_pipeline
|
20 |
+
from sklearn import linear_model
|
21 |
+
import datetime
|
22 |
+
import json
|
23 |
+
from collections import OrderedDict
|
24 |
+
from os import listdir
|
25 |
+
from os.path import isfile, join, isdir
|
26 |
+
import glob
|
27 |
+
import numerapi
|
28 |
+
import itertools
|
29 |
+
import io
|
30 |
+
import requests
|
31 |
+
from pathlib import Path
|
32 |
+
from scipy.stats.mstats import gmean
|
33 |
+
from typing import List, Dict
|
34 |
+
|
35 |
+
|
36 |
+
napi = numerapi.NumerAPI() #verbosity="info")
|
37 |
+
|
38 |
+
|
39 |
+
def get_time_string():
|
40 |
+
"""
|
41 |
+
Generate a time string representation of the time of call of this function.
|
42 |
+
:param None
|
43 |
+
:return: a string that represent the time of the functional call.
|
44 |
+
"""
|
45 |
+
now = datetime.datetime.now()
|
46 |
+
now = str(now.strftime('%Y%m%d%H%M'))
|
47 |
+
return now
|
48 |
+
|
49 |
+
|
50 |
+
def reload_project():
|
51 |
+
"""
|
52 |
+
utility function used during experimentation to reload various model when required, useful for quick experiment iteration
|
53 |
+
:return: None
|
54 |
+
"""
|
55 |
+
reload(project_config)
|
56 |
+
reload(project_utils)
|
57 |
+
reload(numerapi_utils)
|
58 |
+
|
59 |
+
@contextmanager
|
60 |
+
def timer(name):
|
61 |
+
"""
|
62 |
+
utility timer function to check how long a piece of code might take to run.
|
63 |
+
:param name: name of the code fragment to be timed
|
64 |
+
:yield: time taken for the code to run
|
65 |
+
"""
|
66 |
+
t0 = time.time()
|
67 |
+
print('[%s] in progress' % name)
|
68 |
+
yield
|
69 |
+
print('[%s] done in %.6f s' %(name, time.time() - t0))
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def load_data(pickle_file):
|
74 |
+
"""
|
75 |
+
load pickle data from file
|
76 |
+
:param pickle_file: path of pickle data
|
77 |
+
:return: data stored in pickle file
|
78 |
+
"""
|
79 |
+
load_file = open(pickle_file, 'rb')
|
80 |
+
data = pickle.load(load_file)
|
81 |
+
return data
|
82 |
+
|
83 |
+
|
84 |
+
def pickle_data(path, data, protocol=-1, timestamp=False, verbose=True):
|
85 |
+
"""
|
86 |
+
Pickle data to specified file
|
87 |
+
:param path: full path of file where data will be pickled to
|
88 |
+
:param data: data to be pickled
|
89 |
+
:param protocol: pickle protocol, -1 indicate to use the latest protocol
|
90 |
+
:return: None
|
91 |
+
"""
|
92 |
+
file = path
|
93 |
+
if timestamp:
|
94 |
+
base_file = os.path.splitext(file)[0]
|
95 |
+
time_str = '_' + get_time_string()
|
96 |
+
ext = os.path.splitext(os.path.basename(file))[1]
|
97 |
+
file = base_file + time_str + ext
|
98 |
+
|
99 |
+
if verbose:
|
100 |
+
print('creating file %s' % file)
|
101 |
+
|
102 |
+
save_file = open(file, 'wb')
|
103 |
+
pickle.dump(data, save_file, protocol=protocol)
|
104 |
+
save_file.close()
|
105 |
+
|
106 |
+
|
107 |
+
def save_json(path, data, timestamp=False, verbose=True, indent=2):
|
108 |
+
"""
|
109 |
+
Save data to Json format
|
110 |
+
:param path: full path of file where data will be pickled to
|
111 |
+
:param data: data to be pickled
|
112 |
+
:param timestamp: if true, the timestamp will be saved as part of the file name
|
113 |
+
:param verbose: if true, print information about file creation
|
114 |
+
:param indent: specify the width of the indent in the resulted Json file
|
115 |
+
:return: None
|
116 |
+
"""
|
117 |
+
file = path
|
118 |
+
if timestamp:
|
119 |
+
base_file = os.path.splitext(file)[0]
|
120 |
+
time_str = '_' + get_time_string()
|
121 |
+
ext = os.path.splitext(os.path.basename(file))[1]
|
122 |
+
file = base_file + time_str + ext
|
123 |
+
if verbose:
|
124 |
+
print('creating file %s' % file)
|
125 |
+
outfile = open(file, 'w')
|
126 |
+
json.dump(data, outfile, indent=indent)
|
127 |
+
outfile.close()
|
128 |
+
|
129 |
+
|
130 |
+
def load_json(json_file):
|
131 |
+
"""
|
132 |
+
load data from Json file
|
133 |
+
:param json_file: path of json file
|
134 |
+
:return: data stored in json file as python dictionary
|
135 |
+
"""
|
136 |
+
load_file = open(json_file)
|
137 |
+
data = json.load(load_file)
|
138 |
+
load_file.close()
|
139 |
+
return data
|
140 |
+
|
141 |
+
|
142 |
+
def create_folder(path):
|
143 |
+
Path(path).mkdir(parents=True, exist_ok=True)
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
def glob_folder_filelist(path, file_type='', recursive=True):
|
148 |
+
"""
|
149 |
+
utility function that walk through a given directory, and return list of files in the directory
|
150 |
+
:param path: the path of the directory
|
151 |
+
:param file_type: if not '', this function would only consider the file type specified by this parameter
|
152 |
+
:param recursive: if True, perform directory walk-fhrough recursively
|
153 |
+
:return absfile: a list containing absolute path of each file in the directory
|
154 |
+
:return base_files: a list containing base name of each file in the directory
|
155 |
+
"""
|
156 |
+
if path[-1] != '/':
|
157 |
+
path = path +'/'
|
158 |
+
abs_files = []
|
159 |
+
base_files = []
|
160 |
+
patrn = '**' if recursive else '*'
|
161 |
+
glob_path = path + patrn
|
162 |
+
matches = glob.glob(glob_path, recursive=recursive)
|
163 |
+
for f in matches:
|
164 |
+
if os.path.isfile(f):
|
165 |
+
include = True
|
166 |
+
if len(file_type)>0:
|
167 |
+
ext = os.path.splitext(f)[1]
|
168 |
+
if ext[1:] != file_type:
|
169 |
+
include = False
|
170 |
+
if include:
|
171 |
+
abs_files.append(f)
|
172 |
+
base_files.append(os.path.basename(f))
|
173 |
+
return abs_files, base_files
|
174 |
+
|
175 |
+
|
176 |
+
def dir_compare(pathl, pathr):
|
177 |
+
files_pathl = set([f for f in listdir(pathl) if isfile(join(pathl, f))])
|
178 |
+
files_pathr = set([f for f in listdir(pathr) if isfile(join(pathr, f))])
|
179 |
+
return list(files_pathl-files_pathr), list(files_pathr-files_pathl)
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
def lr_dir_sync(pathl, pathr):
|
185 |
+
files_lrddiff, files_rldiff = project_utils.dir_compare(pathl, pathr)
|
186 |
+
for f in files_lrddiff:
|
187 |
+
scr = pathl + f
|
188 |
+
dst = pathr + f
|
189 |
+
print('copying file %s' % scr)
|
190 |
+
copyfile(scr, dst)
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
def copy_file_with_time(src_file, dst_file_name, des_path):
|
195 |
+
basename = os.path.splitext(os.path.basename(dst_file_name))[0]
|
196 |
+
ext_name = os.path.splitext(os.path.basename(dst_file_name))[1]
|
197 |
+
timestr = get_time_string()
|
198 |
+
des_name = '%s%s_%s%s' % (des_path, basename, timestr, ext_name)
|
199 |
+
# print(des_name)
|
200 |
+
copyfile(src_file, des_name)
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
def find_filesfromfolder(target_dir, containtext):
|
207 |
+
absnames, basenames = glob_folder_filelist(target_dir)
|
208 |
+
result_filelist = []
|
209 |
+
for absname, basename in zip(absnames, basenames):
|
210 |
+
if containtext in basename:
|
211 |
+
result_filelist.append(absname)
|
212 |
+
# result_filelist = [f for f in total_filelist if containtext in f]
|
213 |
+
return result_filelist
|
214 |
+
|
215 |
+
|
216 |
+
def cp_files_with_prefix(src_path, dst_path, prefix, ext):
|
217 |
+
abs_file_list, base_file_list = get_folder_filelist(src_path, file_type=ext)
|
218 |
+
# print(abs_file_list)
|
219 |
+
for src_file, base_file in zip(abs_file_list, base_file_list):
|
220 |
+
dst_file = dst_path + prefix + base_file
|
221 |
+
copyfile(src_file, dst_file)
|
222 |
+
return None
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
def mv_files_with_prefix(src_path, dst_path, prefix, ext):
|
227 |
+
abs_file_list, base_file_list = get_folder_filelist(src_path, file_type=ext)
|
228 |
+
# print(abs_file_list)
|
229 |
+
for src_file, base_file in zip(abs_file_list, base_file_list):
|
230 |
+
dst_file = dst_path + prefix + base_file
|
231 |
+
move(src_file, dst_file)
|
232 |
+
return None
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
def empty_folder(path):
|
237 |
+
if path[-1]!='*':
|
238 |
+
path = path + '*'
|
239 |
+
files = glob.glob(path)
|
240 |
+
for f in files:
|
241 |
+
os.remove(f)
|
242 |
+
|
243 |
+
|
244 |
+
def rescale(n, range1, range2):
|
245 |
+
if n>range1[1]: #or n<range1[0]:
|
246 |
+
n=range1[1]
|
247 |
+
if n<range1[0]:
|
248 |
+
n=range1[0]
|
249 |
+
delta1 = range1[1] - range1[0]
|
250 |
+
delta2 = range2[1] - range2[0]
|
251 |
+
return (delta2 * (n - range1[0]) / delta1) + range2[0]
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
def rmse(y_true, y_pred):
|
256 |
+
"""
|
257 |
+
RMSE (Root Mean Square Error) evaluation function
|
258 |
+
:param y_true: label values
|
259 |
+
:param y_pred: prediction values
|
260 |
+
:return: RMSE value of the input prediction values, evaluated against the input label values
|
261 |
+
"""
|
262 |
+
return np.sqrt(mean_squared_error(y_true, y_pred))
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
def str2date(date_str, dateformat='%Y-%m-%d'):
|
268 |
+
"""
|
269 |
+
convert an input string in specified format into datetime format
|
270 |
+
:param date_str: the input string with certain specified format
|
271 |
+
:param dateformat: the format of the string which is used by the strptime function to do the type converson
|
272 |
+
:return dt_value: the datetime value that is corresponding to the input string and the specified format
|
273 |
+
"""
|
274 |
+
dt_value = datetime.datetime.strptime(date_str, dateformat)
|
275 |
+
return dt_value
|
276 |
+
|
277 |
+
|
278 |
+
def isnotebook():
|
279 |
+
"""
|
280 |
+
Determine if the current python file is a jupyter notebook (.ipynb) or a python script (.py)
|
281 |
+
:return: return True if the the current python file is a jupyter notebook, otherwise return False
|
282 |
+
"""
|
283 |
+
try:
|
284 |
+
shell = get_ipython().__class__.__name__
|
285 |
+
if shell == 'ZMQInteractiveShell':
|
286 |
+
return True # Jupyter notebook
|
287 |
+
elif shell == 'TerminalInteractiveShell':
|
288 |
+
return False # Terminal running IPython
|
289 |
+
else:
|
290 |
+
return False # Other type (?)
|
291 |
+
except NameError:
|
292 |
+
return False
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
def list_intersection(left, right):
|
297 |
+
"""
|
298 |
+
take two list as input, conver them into sets, calculate the intersection of the two sets, and return this as a list
|
299 |
+
:param left: the first input list
|
300 |
+
:param right: the second input list
|
301 |
+
:return: the intersection set of elements for both input list, as a list
|
302 |
+
"""
|
303 |
+
left_set = set(left)
|
304 |
+
right_set = set(right)
|
305 |
+
return list(left_set.intersection(right_set))
|
306 |
+
|
307 |
+
|
308 |
+
def list_union(left, right):
|
309 |
+
"""
|
310 |
+
take two list as input, conver them into sets, calculate the union of the two sets, and return this as a list
|
311 |
+
:param left: the first input list
|
312 |
+
:param right: the second input list
|
313 |
+
:return: the union set of elements for both input list, as a list
|
314 |
+
"""
|
315 |
+
left_set = set(left)
|
316 |
+
right_set = set(right)
|
317 |
+
return list(left_set.union(right_set))
|
318 |
+
|
319 |
+
|
320 |
+
def list_difference(left, right):
|
321 |
+
"""
|
322 |
+
take two list as input, conver them into sets, calculate the difference of the first set to the second set, and return this as a list
|
323 |
+
:param left: the first input list
|
324 |
+
:param right: the second input list
|
325 |
+
:return: the result of difference set operation on elements for both input list, as a list
|
326 |
+
"""
|
327 |
+
left_set = set(left)
|
328 |
+
right_set = set(right)
|
329 |
+
return list(left_set.difference(right_set))
|
330 |
+
|
331 |
+
|
332 |
+
def is_listelements_identical(left, right):
|
333 |
+
equal_length = (len(left)==len(right))
|
334 |
+
zero_diff = (len(list_difference(left,right))==0)
|
335 |
+
return equal_length & zero_diff
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
def np_corr(a, b):
|
341 |
+
"""
|
342 |
+
take two numpy arrays, and compute their correlation
|
343 |
+
:param a: the first numpy array input
|
344 |
+
:param b: the second numpy array input
|
345 |
+
:return: the correlation between the two input arrays
|
346 |
+
"""
|
347 |
+
return pd.Series(a).corr(pd.Series(b))
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
def list_sort_values(a, ascending=True):
|
352 |
+
"""
|
353 |
+
sort the value of a list in specified order
|
354 |
+
:param a: the input list
|
355 |
+
:param ascending: specified if the sorting is to be done in ascending or descending order
|
356 |
+
:return: the input list sorted in the specified order
|
357 |
+
"""
|
358 |
+
return pd.Series(a).sort_values(ascending=ascending).tolist()
|
359 |
+
|
360 |
+
|
361 |
+
def get_rank(data):
|
362 |
+
"""
|
363 |
+
convert the values of a list or array into ranked percentage values
|
364 |
+
:param data: the input data in the form of a list or an array
|
365 |
+
:return: the return ranked percentage values in numpy array
|
366 |
+
"""
|
367 |
+
ranks = pd.Series(data).rank(pct=True).values
|
368 |
+
return ranks
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
def plot_feature_corr(df, features, figsize=(10,10), vmin=-1.0):
|
373 |
+
"""
|
374 |
+
plot the pair-wise correlation matrix for specified features in a dataframe
|
375 |
+
:param df: the input dataframe
|
376 |
+
:param features: the list of features for which correlation matrix will be plotted
|
377 |
+
:param figsize: the size of the displayed figure
|
378 |
+
:param vmin: the minimum value of the correlation to be included in the plotting
|
379 |
+
:return: the pair-wise correlation values in the form of pandas dataframe, the figure will be plotted during the operation of this function.
|
380 |
+
"""
|
381 |
+
val_corr = df[features].corr().fillna(0)
|
382 |
+
f, ax = plt.subplots(figsize=figsize)
|
383 |
+
sns.heatmap(val_corr, vmin=vmin, square=True)
|
384 |
+
return val_corr
|
385 |
+
|
386 |
+
|
387 |
+
def decision_to_prob(data):
|
388 |
+
"""
|
389 |
+
convert output value of a sklearn classifier (i.e. ridge classifier) decision function into probability
|
390 |
+
:param data: output value of decision function in the form of a numpy array
|
391 |
+
:return: value of probability in the form of a numpy array
|
392 |
+
"""
|
393 |
+
prob = np.exp(data) / np.sum(np.exp(data))
|
394 |
+
return prob
|
395 |
+
|
396 |
+
|
397 |
+
def np_describe(a):
|
398 |
+
"""
|
399 |
+
provide overall statistic description of an input numpy value using the Describe method of Pandas Series
|
400 |
+
:param a: the input numpy array
|
401 |
+
:return: overall statistic description
|
402 |
+
"""
|
403 |
+
return pd.Series(a.flatten()).describe()
|
404 |
+
|
405 |
+
|
406 |
+
def ks_2samp_selection(train_df, test_df, pval=0.1):
|
407 |
+
"""
|
408 |
+
use scipy ks_2samp function to select features that are statistically similar between the input train and test dataframe.
|
409 |
+
:param train_df: the input train dataframe
|
410 |
+
:param test_df: the input test dataframe
|
411 |
+
:param pval: the p value threshold use to decide which features to be selected. Only features with value higher than the specified p value will be selected
|
412 |
+
:return train_df: the return train dataframe with selected features
|
413 |
+
:return test_df: the return test dataframe with selected features
|
414 |
+
"""
|
415 |
+
list_p_value = []
|
416 |
+
for i in train_df.columns.tolist():
|
417 |
+
list_p_value.append(ks_2samp(train_df[i], test_df[i])[1])
|
418 |
+
Se = pd.Series(list_p_value, index=train_df.columns.tolist()).sort_values()
|
419 |
+
list_discarded = list(Se[Se < pval].index)
|
420 |
+
train_df = train_df.drop(columns=list_discarded)
|
421 |
+
test_df = test_df.drop(columns=list_discarded)
|
422 |
+
return train_df, test_df
|
423 |
+
|
424 |
+
|
425 |
+
|
426 |
+
def df_balance_sampling(df, class_feature, minor_class=1, sample_ratio=1):
|
427 |
+
"""
|
428 |
+
:param df:
|
429 |
+
:param class_feature:
|
430 |
+
:param minor_class:
|
431 |
+
:param sample_ratio:
|
432 |
+
:return:
|
433 |
+
"""
|
434 |
+
minor_df = df[df[class_feature] == minor_class]
|
435 |
+
major_df = df[df[class_feature] == (1 - minor_class)].sample(sample_ratio * len(minor_df))
|
436 |
+
|
437 |
+
res_df = minor_df.append(major_df)
|
438 |
+
res_df = res_df.sample(len(res_df)).reset_index(drop=True)
|
439 |
+
return res_df
|
440 |
+
|
441 |
+
|
442 |
+
def prob2acc(label, probs, p=0.5):
|
443 |
+
"""
|
444 |
+
calculate accuracy score for probability predictions with given threshold, as part of the process, the input probability predictions will be converted into discrete binary predictions
|
445 |
+
:param label: labels used to evaluate accuracy score
|
446 |
+
:param probs: probability predictions for which accuracy score will be calculated
|
447 |
+
:param p: the threshold to be used for convert probabilites into discrete binary values 0 and 1
|
448 |
+
:return acc: the computed accuracy score
|
449 |
+
:return preds: predictions in discrete binary value
|
450 |
+
"""
|
451 |
+
|
452 |
+
preds = (probs >= p).astype(np.uint8)
|
453 |
+
acc = accuracy_score(label, preds)
|
454 |
+
return acc, preds
|
455 |
+
|
456 |
+
|
457 |
+
|
458 |
+
def np_pearson(t,p):
|
459 |
+
vt = t - t.mean()
|
460 |
+
vp = p - p.mean()
|
461 |
+
top = np.sum(vt*vp)
|
462 |
+
bottom = np.sqrt(np.sum(vt**2)) * np.sqrt(np.sum(vp**2))
|
463 |
+
res = top/bottom
|
464 |
+
return res
|
465 |
+
|
466 |
+
|
467 |
+
def df_get_features_with_str(df, ptrn):
|
468 |
+
"""
|
469 |
+
extract list of feature names from a data frame that contain the specified regular expression pattern
|
470 |
+
:param df: the input dataframe of which features name to be analysed
|
471 |
+
:param ptrn: the specified regular expression pattern
|
472 |
+
:return: list of feature names that contained the specified regular expression
|
473 |
+
"""
|
474 |
+
return [col for col in df.columns.tolist() if len(re.findall(ptrn, col)) > 0]
|
475 |
+
|
476 |
+
|
477 |
+
def df_fillna_with_other(df, src_feature, dst_feature):
|
478 |
+
"""
|
479 |
+
fill the NA values of a specified feature in a dataframe with values of another feature from the same row.
|
480 |
+
:param df: the input dataframe
|
481 |
+
:param src_feature: the specified feature of which NA value will be filled
|
482 |
+
:param dst_feature: the feature of which values will be used
|
483 |
+
:return: a dataframe with the specified feature's NA value being filled by values from the "dst_feature"
|
484 |
+
"""
|
485 |
+
src_vals = df[src_feature].values
|
486 |
+
dst_vals = df[dst_feature].values
|
487 |
+
argwhere_nan = np.argwhere(np.isnan(dst_vals)).flatten()
|
488 |
+
dst_vals[argwhere_nan] = src_vals[argwhere_nan]
|
489 |
+
df[dst_feature] = dst_vals
|
490 |
+
return df
|
491 |
+
|
492 |
+
|
493 |
+
|
494 |
+
def plot_prediction_prob(y_pred_prob):
|
495 |
+
"""
|
496 |
+
plot probability prediction values using histrogram
|
497 |
+
:param y_pred_prob: the probability prediction values to be plotted
|
498 |
+
:return: None, the plot will be plotted during the operation of the function.
|
499 |
+
"""
|
500 |
+
prob_series = pd.Series(data=y_pred_prob)
|
501 |
+
prob_series.name = 'prediction probability'
|
502 |
+
prob_series.plot(kind='hist', figsize=(15, 5), bins=50)
|
503 |
+
plt.show()
|
504 |
+
print(prob_series.describe())
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
def df_traintest_split(df, split_var, seed=None, train_ratio=0.75):
|
511 |
+
"""
|
512 |
+
perform train test split on a specified feature on a given dataframe wwith specified train ratio. Unique value of the specified feature will only present on either the resulted train or the test dataframe
|
513 |
+
:param df: the input dataframe to be split
|
514 |
+
:param split_var: the feature to be used as unique value to perform the split
|
515 |
+
:param seed: the random used to facilitate the train test split
|
516 |
+
:param train_ratio: the ratio of data to be split into the resulted train dataframe.
|
517 |
+
:return train_df: the resulted train dataframe after the split
|
518 |
+
:return test_df: the resulted test dataframe after the split
|
519 |
+
"""
|
520 |
+
sv_list = df[split_var].unique().tolist()
|
521 |
+
train_length = int(len(sv_list) * train_ratio)
|
522 |
+
train_siv_list = pd.Series(df[split_var].unique()).sample(train_length, random_state=seed)
|
523 |
+
train_idx = df.loc[df[split_var].isin(train_siv_list)].index.values
|
524 |
+
test_idx = df.iloc[df.index.difference(train_idx)].index.values
|
525 |
+
train_df = df.loc[train_idx].copy().reset_index(drop=True)
|
526 |
+
test_df = df.loc[test_idx].copy().reset_index(drop=True)
|
527 |
+
return train_df, test_df
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
# https://www.kaggle.com/gemartin/load-data-reduce-memory-usage
|
532 |
+
def reduce_mem_usage(df, verbose=True, exceiptions=[]):
|
533 |
+
""" iterate through all the columns of a dataframe and modify the data type
|
534 |
+
to reduce memory usage.
|
535 |
+
"""
|
536 |
+
np_input = False
|
537 |
+
if isinstance(df, np.ndarray):
|
538 |
+
np_input = True
|
539 |
+
df = pd.DataFrame(data=df)
|
540 |
+
|
541 |
+
start_mem = df.memory_usage().sum() / 1024 ** 2
|
542 |
+
col_id = 0
|
543 |
+
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
|
544 |
+
for col in df.columns:
|
545 |
+
if verbose: print('doing %d: %s' % (col_id, col))
|
546 |
+
col_type = df[col].dtype
|
547 |
+
try:
|
548 |
+
if (col_type != object) & (col not in exceiptions):
|
549 |
+
c_min = df[col].min()
|
550 |
+
c_max = df[col].max()
|
551 |
+
if str(col_type)[:3] == 'int':
|
552 |
+
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
|
553 |
+
df[col] = df[col].astype(np.int8)
|
554 |
+
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
|
555 |
+
df[col] = df[col].astype(np.int16)
|
556 |
+
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
|
557 |
+
df[col] = df[col].astype(np.int32)
|
558 |
+
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
|
559 |
+
df[col] = df[col].astype(np.int64)
|
560 |
+
else:
|
561 |
+
if c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
|
562 |
+
# df[col] = df[col].astype(np.float16)
|
563 |
+
# elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
|
564 |
+
df[col] = df[col].astype(np.float32)
|
565 |
+
else:
|
566 |
+
df[col] = df[col].astype(np.float64)
|
567 |
+
# else:
|
568 |
+
# df[col] = df[col].astype('category')
|
569 |
+
# pass
|
570 |
+
except:
|
571 |
+
pass
|
572 |
+
col_id += 1
|
573 |
+
end_mem = df.memory_usage().sum() / 1024 ** 2
|
574 |
+
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
|
575 |
+
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
|
576 |
+
|
577 |
+
if np_input:
|
578 |
+
return df.values
|
579 |
+
else:
|
580 |
+
return df
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
def get_xgb_featimp(model):
|
585 |
+
imp_type = ['weight', 'gain', 'cover', 'total_gain', 'total_cover']
|
586 |
+
imp_dict = {}
|
587 |
+
try:
|
588 |
+
bst = model.get_booster()
|
589 |
+
except:
|
590 |
+
bst = model
|
591 |
+
feature_names = bst.feature_names
|
592 |
+
for impt in imp_type:
|
593 |
+
imp_dict[impt] = []
|
594 |
+
scores = bst.get_score(importance_type=impt)
|
595 |
+
for feature in feature_names:
|
596 |
+
if feature in scores.keys():
|
597 |
+
imp_dict[impt].append(scores[feature])
|
598 |
+
else:
|
599 |
+
imp_dict[impt].append(np.nan)
|
600 |
+
imp_df = pd.DataFrame(index=bst.feature_names, data=imp_dict)
|
601 |
+
return imp_df
|
602 |
+
|
603 |
+
|
604 |
+
def get_df_rankavg(df):
|
605 |
+
idx = df.index
|
606 |
+
cols = df.columns.tolist()
|
607 |
+
rankavg_dict = {}
|
608 |
+
for col in cols:
|
609 |
+
rankavg_dict[col]=df[col].rank(pct=True).tolist()
|
610 |
+
rankavg_df = pd.DataFrame(index=idx, columns=cols, data=rankavg_dict)
|
611 |
+
rankavg_df['rankavg'] = rankavg_df.mean(axis=1)
|
612 |
+
return rankavg_df.sort_values(by='rankavg', ascending=False)
|
613 |
+
|
614 |
+
|
615 |
+
def get_list_gmean(lists):
|
616 |
+
out = np.zeros((len(lists[0]), len(lists)))
|
617 |
+
for i in range(0, len(lists)):
|
618 |
+
out[:,i] = lists[i]
|
619 |
+
gmean_out = gmean(out, axis=1)
|
620 |
+
return gmean_out
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
def generate_nwise_combination(items, n=2):
|
625 |
+
return list(itertools.combinations(items, n))
|
626 |
+
|
627 |
+
|
628 |
+
def pairwise_feature_generation(df, feature_list, operator='addition', verbose=True):
|
629 |
+
feats_pair = generate_nwise_combination(feature_list, 2)
|
630 |
+
result_df = pd.DataFrame()
|
631 |
+
for pair in feats_pair:
|
632 |
+
if verbose:
|
633 |
+
print('generating %s of %s and %s' % (operator, pair[0], pair[1]))
|
634 |
+
if operator == 'addition':
|
635 |
+
feat_name = pair[0] + '_add_' + pair[1]
|
636 |
+
result_df[feat_name] = df[pair[0]] + df[pair[1]]
|
637 |
+
elif operator == 'multiplication':
|
638 |
+
feat_name = pair[0] + '_mulp_' + pair[1]
|
639 |
+
result_df[feat_name] = df[pair[0]] * df[pair[1]]
|
640 |
+
elif operator == 'division':
|
641 |
+
feat_name = pair[0] + '_div_' + pair[1]
|
642 |
+
result_df[feat_name] = df[pair[0]] / df[pair[1]]
|
643 |
+
return result_df
|
644 |
+
|
645 |
+
|
646 |
+
def try_divide(x, y, val=0.0):
|
647 |
+
"""
|
648 |
+
try to perform division between two number, and return a default value if division by zero is detected
|
649 |
+
:param x: the number to be used as dividend
|
650 |
+
:param y: the number to be used as divisor
|
651 |
+
:param val: the default output value
|
652 |
+
:return: the output value, the default value of val will be returned if division by zero is detected
|
653 |
+
"""
|
654 |
+
if y != 0.0:
|
655 |
+
val = float(x) / y
|
656 |
+
return val
|
657 |
+
|
658 |
+
|
659 |
+
def series_reverse_cumsum(a):
|
660 |
+
return a.fillna(0).values[::-1].cumsum()[::-1]
|
661 |
+
|
662 |
+
|
663 |
+
def get_array_sharpe(values):
|
664 |
+
return values.mean()/values.std()
|
665 |
+
|
666 |
+
|
667 |
+
#### NumerDash specific functions ###
|
668 |
+
|
669 |
+
def calculate_rounddailysharpe_dashboard(df, lastround, earliest_round, score='corr'):
|
670 |
+
if score=='corr':
|
671 |
+
target = 'corr_sharpe'
|
672 |
+
elif score == 'corr_pct':
|
673 |
+
target = 'corr_pct_sharpe'
|
674 |
+
elif score=='mmc':
|
675 |
+
target = 'mmc_sharpe'
|
676 |
+
elif score=='mmc_pct':
|
677 |
+
target = 'mmc_pct_sharpe'
|
678 |
+
elif score=='corrmmc':
|
679 |
+
target = 'corrmmc_sharpe'
|
680 |
+
elif score=='corr2mmc':
|
681 |
+
target = 'corr2mmc_sharpe'
|
682 |
+
elif score=='cmavg_pct':
|
683 |
+
target = 'cmavgpct_sharpe'
|
684 |
+
elif score=='c2mavg_pct':
|
685 |
+
target = 'c2mavcpct_sharpe'
|
686 |
+
|
687 |
+
mean_feat = 'avg_sharpe'
|
688 |
+
sos_feat = 'sos'
|
689 |
+
df = df[(df['roundNumber'] >= earliest_round) & (df['roundNumber'] <= lastround)]
|
690 |
+
res = df.groupby(['model', 'roundNumber', 'group'])[score].apply(
|
691 |
+
lambda x: get_array_sharpe(x)).reset_index(drop=False)
|
692 |
+
res = res.rename(columns={score: target}).sort_values('roundNumber', ascending=False)
|
693 |
+
res = res.pivot(index=['model', 'group'], columns='roundNumber', values=target)
|
694 |
+
res.columns.name = ''
|
695 |
+
cols = [i for i in res.columns[::-1]]
|
696 |
+
res = res[cols]
|
697 |
+
res[mean_feat] = res[cols].mean(axis=1)
|
698 |
+
res[sos_feat] = res[cols].apply(lambda x: get_array_sharpe(x), axis=1)
|
699 |
+
res = res.drop_duplicates(keep='first').sort_values(by=sos_feat, ascending=False)
|
700 |
+
res.reset_index(drop=False, inplace=True)
|
701 |
+
return res[['model', 'group', sos_feat, mean_feat]+cols]
|
702 |
+
|
703 |
+
|
704 |
+
|
705 |
+
def groupby_agg_execution(agg_recipies, df, verbose=True):
|
706 |
+
result_dfs = dict()
|
707 |
+
for groupby_cols, features, aggs in agg_recipies:
|
708 |
+
group_object = df.groupby(groupby_cols)
|
709 |
+
groupby_key = '_'.join(groupby_cols)
|
710 |
+
if groupby_key not in list(result_dfs.keys()):
|
711 |
+
result_dfs[groupby_key] = pd.DataFrame()
|
712 |
+
for feature in features:
|
713 |
+
rename_col = feature
|
714 |
+
for agg in aggs:
|
715 |
+
if isinstance(agg, dict):
|
716 |
+
agg_name = list(agg.keys())[0]
|
717 |
+
agg_func = agg[agg_name]
|
718 |
+
else:
|
719 |
+
agg_name = agg
|
720 |
+
agg_func = agg
|
721 |
+
if agg_name=='count':
|
722 |
+
groupby_aggregate_name = '{}_{}'.format(groupby_key, agg_name)
|
723 |
+
else:
|
724 |
+
groupby_aggregate_name = '{}_{}_{}'.format(groupby_key, feature, agg_name)
|
725 |
+
verbose and print(f'generating statistic {groupby_aggregate_name}')
|
726 |
+
groupby_res_df = group_object[feature].agg(agg_func).reset_index(drop=False)
|
727 |
+
groupby_res_df = groupby_res_df.rename(columns={rename_col: groupby_aggregate_name})
|
728 |
+
if len(result_dfs[groupby_key]) == 0:
|
729 |
+
result_dfs[groupby_key] = groupby_res_df
|
730 |
+
else:
|
731 |
+
result_dfs[groupby_key][groupby_aggregate_name] = groupby_res_df[groupby_aggregate_name]
|
732 |
+
return result_dfs
|
733 |
+
|
734 |
+
|
735 |
+
def get_latest_round_id():
|
736 |
+
try:
|
737 |
+
all_competitions = numerapi_utils.get_competitions()
|
738 |
+
latest_comp_id = all_competitions[0]['number']
|
739 |
+
except:
|
740 |
+
print('calling api unsuccessulf, using downloaded data to get the latest round')
|
741 |
+
local_data = load_data(project_config.DASHBOARD_MODEL_RESULT_FILE)
|
742 |
+
latest_comp_id = local_data['roundNumber'].max()
|
743 |
+
return int(latest_comp_id)
|
744 |
+
# except:
|
745 |
+
|
746 |
+
latest_round = get_latest_round_id()
|
747 |
+
|
748 |
+
|
749 |
+
|
750 |
+
|
751 |
+
def update_numerati_data(url=project_config.NUMERATI_URL, save_path=project_config.FEATURE_PATH):
|
752 |
+
content = requests.get(url).content
|
753 |
+
data = pd.read_csv(io.StringIO(content.decode('utf-8')))
|
754 |
+
save_file = os.path.join(save_path, 'numerati_data.pkl')
|
755 |
+
pickle_data(save_file, data)
|
756 |
+
return data
|
757 |
+
|
758 |
+
|
759 |
+
|
760 |
+
|
761 |
+
def get_model_group(model_name):
|
762 |
+
cat_name = 'other'
|
763 |
+
if model_name in project_config.MODEL_NAMES+project_config.NEW_MODEL_NAMES:
|
764 |
+
cat_name = 'yx'
|
765 |
+
elif model_name in project_config.TOP_LB:
|
766 |
+
cat_name = 'top_corr'
|
767 |
+
elif model_name in project_config.IAAI_MODELS:
|
768 |
+
cat_name = 'iaai'
|
769 |
+
elif model_name in project_config.ARBITRAGE_MODELS:
|
770 |
+
cat_name = 'arbitrage'
|
771 |
+
elif model_name in project_config.MCV_MODELS:
|
772 |
+
cat_name = 'mcv'
|
773 |
+
# elif model_name in project_config.MM_MODELS:
|
774 |
+
# cat_name = 'mm'
|
775 |
+
elif model_name in project_config.BENCHMARK_MODELS:
|
776 |
+
cat_name = 'benchmark'
|
777 |
+
elif model_name in project_config.TP3M:
|
778 |
+
cat_name = 'top_3m'
|
779 |
+
elif model_name in project_config.TP1Y:
|
780 |
+
cat_name = 'top_1y'
|
781 |
+
return cat_name
|
782 |
+
|
783 |
+
|
784 |
+
def get_dashboard_data_status():
|
785 |
+
dashboard_data_tstr = 'NA'
|
786 |
+
nmtd_tstr = 'NA'
|
787 |
+
try:
|
788 |
+
dashboard_data_t = datetime.datetime.utcfromtimestamp(os.path.getctime(project_config.DASHBOARD_MODEL_RESULT_FILE))
|
789 |
+
dashboard_data_tstr = dashboard_data_t.strftime(project_config.DATETIME_FORMAT2)
|
790 |
+
except Exception as e:
|
791 |
+
print(e)
|
792 |
+
pass
|
793 |
+
try:
|
794 |
+
nmtd_t = datetime.datetime.utcfromtimestamp(os.path.getctime(project_config.NUMERATI_FILE))
|
795 |
+
nmtd_tstr = nmtd_t.strftime(project_config.DATETIME_FORMAT2)
|
796 |
+
except Exception as e:
|
797 |
+
print(e)
|
798 |
+
pass
|
799 |
+
return dashboard_data_tstr, nmtd_tstr
|
800 |
+
|
801 |
+
|
802 |
+
|
803 |
+
|
804 |
+
|
805 |
+
|
806 |
+
|
807 |
+
|
808 |
+
|
809 |
+
|
810 |
+
|
811 |
+
|
812 |
+
|
813 |
+
|