import os import gradio as gr import torch import spaces from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer if a GPU is available if torch.cuda.is_available(): model_id = "allenai/OLMo-7B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) else: raise EnvironmentError("CUDA device not available. Please run on a GPU-enabled environment.") # Basic function to generate response based on passage and question @spaces.GPU def generate_response(passage: str, question: str) -> str: # Prepare the input text by combining the passage and question messages = [{"role": "user", "content": f"Passage: {passage}\nQuestion: {question}"}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) # Generate text, focusing only on the new tokens added by the model outputs = model.generate(**inputs, max_new_tokens=150) # Decode only the generated part, skipping the prompt input # generated_tokens = outputs[0][inputs.input_ids.shape[-1]:] # Ignore input tokens in the output response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] return response # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Passage and Question Response Generator") passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage here", lines=5) question_input = gr.Textbox(label="Question", placeholder="Enter the question here", lines=2) output_box = gr.Textbox(label="Response", placeholder="Model's response will appear here") submit_button = gr.Button("Generate Response") submit_button.click(fn=generate_response, inputs=[passage_input, question_input], outputs=output_box) # Run the app if __name__ == "__main__": demo.launch()