Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import torch | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model and tokenizer if a GPU is available | |
if torch.cuda.is_available(): | |
model_id = "allenai/OLMo-7B-hf" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
else: | |
raise EnvironmentError("CUDA device not available. Please run on a GPU-enabled environment.") | |
# Basic function to generate response based on passage and question | |
def generate_response(passage: str, question: str) -> str: | |
# Prepare the input text by combining the passage and question | |
message = [f"Passage: {passage}\nQuestion: {question}\nAnswer:"] | |
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False).to('cuda') | |
response = model.generate(**inputs, max_new_tokens=100) | |
response = tokenizer.batch_decode(response, skip_special_tokens=True)[0] | |
response = response[len(message[0]):].strip().split('\n')[0] | |
return response | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Passage and Question Response Generator") | |
passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage here", lines=5) | |
question_input = gr.Textbox(label="Question", placeholder="Enter the question here", lines=2) | |
output_box = gr.Textbox(label="Response", placeholder="Model's response will appear here") | |
submit_button = gr.Button("Generate Response") | |
submit_button.click(fn=generate_response, inputs=[passage_input, question_input], outputs=output_box) | |
# Run the app | |
if __name__ == "__main__": | |
demo.launch() | |