File size: 5,082 Bytes
3a81605
513e1fb
 
 
3a81605
7dc23ce
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc23ce
 
 
 
 
513e1fb
 
 
 
 
 
 
 
 
7dc23ce
 
 
 
 
 
 
 
 
 
 
 
 
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a81605
7dc23ce
 
 
 
 
 
513e1fb
 
 
7dc23ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a81605
513e1fb
 
 
 
 
 
 
 
7dc23ce
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import cv2
import torch as th
import os
import numpy as np
from decord import VideoReader, cpu
import ffmpeg


class Normalize(object):
    def __init__(self, mean, std):
        self.mean = th.FloatTensor(mean).view(1, 3, 1, 1)
        self.std = th.FloatTensor(std).view(1, 3, 1, 1)

    def __call__(self, tensor):
        tensor = (tensor - self.mean) / (self.std + 1e-8)
        return tensor


class Preprocessing(object):
    def __init__(self):
        self.norm = Normalize(
            mean=[0.48145466, 0.4578275, 0.40821073],
            std=[0.26862954, 0.26130258, 0.27577711],
        )

    def __call__(self, tensor):
        tensor = tensor / 255.0
        tensor = self.norm(tensor)
        return tensor


class VideoLoader:
    """Pytorch video loader."""

    def __init__(
        self,
        framerate=1,
        size=224,
        centercrop=True,
    ):
        self.centercrop = centercrop
        self.size = size
        self.framerate = framerate
        self.preprocess = Preprocessing()
        self.max_feats = 10
        self.features_dim = 768

    # def _get_video_dim(self, video_path):
    #     vr = VideoReader(video_path, ctx=cpu(0))
    #     height, width, _ = vr[0].shape
    #     frame_rate = vr.get_avg_fps()
    #     return height, width, frame_rate

    def _get_output_dim(self, h, w):
        if isinstance(self.size, tuple) and len(self.size) == 2:
            return self.size
        elif h >= w:
            return int(h * self.size / w), self.size
        else:
            return self.size, int(w * self.size / h)

    def _get_video_dim(self, video_path):
        probe = ffmpeg.probe(video_path)
        video_stream = next(
            (stream for stream in probe["streams"] if stream["codec_type"] == "video"),
            None,
        )
        width = int(video_stream["width"])
        height = int(video_stream["height"])
        num, denum = video_stream["avg_frame_rate"].split("/")
        frame_rate = int(num) / int(denum)
        return height, width, frame_rate


    def _getvideo(self, video_path):
        
        if os.path.isfile(video_path):
            print("Decoding video: {}".format(video_path))
            try:
                h, w, fr = self._get_video_dim(video_path)
            except:
                print("ffprobe failed at: {}".format(video_path))
                return {
                    "video": th.zeros(1),
                    "input": video_path
                }
            if fr < 1:
                print("Corrupted Frame Rate: {}".format(video_path))
                return {
                    "video": th.zeros(1),
                    "input": video_path
                }
            height, width = self._get_output_dim(h, w)
            # resize ##
            try:
                cmd = (
                    ffmpeg.input(video_path)
                    .filter("fps", fps=self.framerate)
                    .filter("scale", width, height)
                )
                if self.centercrop:
                    x = int((width - self.size) / 2.0)
                    y = int((height - self.size) / 2.0)
                    cmd = cmd.crop(x, y, self.size, self.size)
                out, _ = cmd.output("pipe:", format="rawvideo", pix_fmt="rgb24").run(
                    capture_stdout=True, quiet=True
                )

            # try:
            #     vr = VideoReader(video_path, ctx=cpu(0))
            #     video = vr.get_batch(range(0, len(vr), int(fr))).asnumpy()
            #     video = np.array([cv2.resize(frame, (width, height)) for frame in video])
            

            #     if self.centercrop:
            #         x = int((width - self.size) / 2.0)
            #         y = int((height - self.size) / 2.0)
            #         video = video[:, y:y+self.size, x:x+self.size, :]

            except:
                print("ffmpeg error at: {}".format(video_path))
                return {
                    "video": th.zeros(1),
                    "input": video_path,
                }
            if self.centercrop and isinstance(self.size, int):
                height, width = self.size, self.size
            video = np.frombuffer(out, np.uint8).reshape([-1, height, width, 3])
            video = th.from_numpy(video.astype("float32"))
            video = video.permute(0, 3, 1, 2) # t,c,h,w
        else:
            video = th.zeros(1)

        return {"video": video, "input": video_path}

    def __call__(self, video_path):

        video = self._getvideo(video_path)['video']

        if len(video) > self.max_feats:
            sampled = []
            for j in range(self.max_feats):
                sampled.append(video[(j * len(video)) // self.max_feats])
            video = th.stack(sampled)
            video_len = self.max_feats
        elif len(video) < self.max_feats:
            video_len = len(video)
            video = th.cat(
                [video, th.zeros(self.max_feats - video_len, self.features_dim)], 0
            )
        video = self.preprocess(video)
        return video, video_len