T-MoENet / model /deberta_moe.py
yixin1121's picture
Upload folder using huggingface_hub
3a81605 verified
# coding=utf-8
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DeBERTa-v2 model. """
import math
from collections.abc import Sequence
from typing import Tuple, Optional
import clip
import numpy as np
import torch
from torch import _softmax_backward_data, nn
from torch.nn import CrossEntropyLoss, LayerNorm
from .adapter import Adapter
from .moe import MoE
from transformers.activations import ACT2FN
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers import DebertaV2Config, DebertaV2ForSequenceClassification
from .evl import EVLTransformer, recursive_gumbel_softmax
from transformers import pytorch_utils
_CONFIG_FOR_DOC = "DebertaV2Config"
_TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/deberta-v2-xlarge",
"microsoft/deberta-v2-xxlarge",
"microsoft/deberta-v2-xlarge-mnli",
"microsoft/deberta-v2-xxlarge-mnli",
]
class MaskedLMOutput(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
loss_moe: Optional[torch.FloatTensor] = None
loads: Optional[torch.FloatTensor] = None
embeddings: Optional[torch.FloatTensor] = None
class BaseModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
position_embeddings: torch.FloatTensor = None
attention_mask: torch.BoolTensor = None
loss_moe: torch.FloatTensor = None
video_g: torch.FloatTensor = None
loads: torch.LongTensor = None
embeddings: torch.FloatTensor = None
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = StableDropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
class XSoftmax(torch.autograd.Function):
"""
Masked Softmax which is optimized for saving memory
Args:
input (:obj:`torch.tensor`): The input tensor that will apply softmax.
mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
Example::
import torch
from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
# Make a tensor
x = torch.randn([4,20,100])
# Create a mask
mask = (x>0).int()
y = XSoftmax.apply(x, mask, dim=-1)
"""
@staticmethod
def forward(self, input, mask, dim):
self.dim = dim
rmask = ~(mask.bool())
output = input.masked_fill(rmask, float("-inf"))
output = torch.softmax(output, self.dim)
output.masked_fill_(rmask, 0)
self.save_for_backward(output)
return output
@staticmethod
def backward(self, grad_output):
(output,) = self.saved_tensors
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
return inputGrad, None, None
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
class DropoutContext(object):
def __init__(self):
self.dropout = 0
self.mask = None
self.scale = 1
self.reuse_mask = True
# Copied from transformers.models.deberta.modeling_deberta.get_mask
def get_mask(input, local_context):
if not isinstance(local_context, DropoutContext):
dropout = local_context
mask = None
else:
dropout = local_context.dropout
dropout *= local_context.scale
mask = local_context.mask if local_context.reuse_mask else None
if dropout > 0 and mask is None:
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool()
if isinstance(local_context, DropoutContext):
if local_context.mask is None:
local_context.mask = mask
return mask, dropout
# Copied from transformers.models.deberta.modeling_deberta.XDropout
class XDropout(torch.autograd.Function):
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
@staticmethod
def forward(ctx, input, local_ctx):
mask, dropout = get_mask(input, local_ctx)
ctx.scale = 1.0 / (1 - dropout)
if dropout > 0:
ctx.save_for_backward(mask)
return input.masked_fill(mask, 0) * ctx.scale
else:
return input
@staticmethod
def backward(ctx, grad_output):
if ctx.scale > 1:
(mask,) = ctx.saved_tensors
return grad_output.masked_fill(mask, 0) * ctx.scale, None
else:
return grad_output, None
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
class StableDropout(nn.Module):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob):
super().__init__()
self.drop_prob = drop_prob
self.count = 0
self.context_stack = None
def forward(self, x):
"""
Call the module
Args:
x (:obj:`torch.tensor`): The input tensor to apply dropout
"""
if self.training and self.drop_prob > 0:
return XDropout.apply(x, self.get_context())
return x
def clear_context(self):
self.count = 0
self.context_stack = None
def init_context(self, reuse_mask=True, scale=1):
if self.context_stack is None:
self.context_stack = []
self.count = 0
for c in self.context_stack:
c.reuse_mask = reuse_mask
c.scale = scale
def get_context(self):
if self.context_stack is not None:
if self.count >= len(self.context_stack):
self.context_stack.append(DropoutContext())
ctx = self.context_stack[self.count]
ctx.dropout = self.drop_prob
self.count += 1
return ctx
else:
return self.drop_prob
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
class DebertaV2SelfOutput(nn.Module):
def __init__(self, config, ds_factor, dropout, add_moe, gating):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.add_moe = add_moe
if not self.add_moe and ds_factor:
self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
else:
self.moe_layer = MoE(ds_factor = ds_factor, moe_input_size=config.hidden_size, dropout=dropout, num_experts=4, top_k=2, gating=gating)
def forward(self, hidden_states, input_tensor, temporal_factor = None, train_mode = True):
hidden_states = self.dense(hidden_states)
if not self.add_moe:
hidden_states = self.adapter(hidden_states)
else:
hidden_states, loss_moe, load = self.moe_layer(temporal_factor, hidden_states, train=train_mode)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
if not self.add_moe:
return hidden_states, None, None
return hidden_states, loss_moe, load
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
class DebertaV2Attention(nn.Module):
def __init__(self, config, ds_factor, dropout, add_moe = False, gating='linear'):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = DebertaV2SelfOutput(config, ds_factor, dropout, add_moe, gating)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
return_att=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
temporal_factor=None,
train_mode=True
):
self_output = self.self(
hidden_states,
attention_mask,
return_att,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if return_att:
self_output, att_matrix = self_output
if query_states is None:
query_states = hidden_states
attention_output, loss_moe, load = self.output(self_output, query_states, temporal_factor, train_mode)
if return_att:
return (attention_output, att_matrix, loss_moe)
else:
return attention_output, loss_moe, load
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
class DebertaV2Intermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
class DebertaV2Output(nn.Module):
def __init__(self, config, ds_factor, dropout, add_moe = False, gating='linear',layer_id=0):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
self.ds_factor = ds_factor
self.add_moe = add_moe
if not self.add_moe and self.ds_factor:
self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
elif self.add_moe:
self.moe_layer = MoE(ds_factor=ds_factor, moe_input_size=config.hidden_size, dropout=dropout, num_experts=4, top_k=1, gating=gating, layer_id=layer_id)
#self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
def forward(self, hidden_states, input_tensor, temporal_factor, train_mode):
hidden_states = self.dense(hidden_states)
if not self.add_moe and self.ds_factor:
hidden_states = self.adapter(hidden_states)
elif self.add_moe:
hidden_states, loss_moe, load = self.moe_layer(temporal_factor, hidden_states, train=train_mode)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
if not self.add_moe:
return hidden_states, None, None
return hidden_states, loss_moe, load
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
class DebertaV2Layer(nn.Module):
def __init__(
self,
config,
ds_factor_attn,
ds_factor_ff,
dropout,
layer_id,
):
super().__init__()
self.layer_id = layer_id
self.add_moe = False
#if layer_id >= config.num_hidden_layers - 2:
# self.add_moe = True
if layer_id < 2:
self.add_moe = True
self.attention = DebertaV2Attention(config, ds_factor_attn, dropout, False)
self.intermediate = DebertaV2Intermediate(config)
self.output = DebertaV2Output(config, ds_factor_ff, dropout, self.add_moe, gating="linear", layer_id = layer_id)
def forward(
self,
temporal_factor,
hidden_states,
attention_mask,
return_att=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
train_mode=True,
):
attention_output = self.attention(
hidden_states,
attention_mask,
return_att=return_att,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
temporal_factor=temporal_factor,
train_mode=train_mode
)
if return_att:
attention_output, att_matrix, loss_moe_attn = attention_output
else:
attention_output, loss_moe_attn, load = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output, loss_moe_ffn, load = self.output(intermediate_output, attention_output, temporal_factor=temporal_factor, train_mode=train_mode)
loss_moe = loss_moe_attn if loss_moe_attn else loss_moe_ffn
if return_att:
return (layer_output, att_matrix)
return layer_output, loss_moe, load
class ConvLayer(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = getattr(config, "conv_kernel_size", 3)
groups = getattr(config, "conv_groups", 1)
self.conv_act = getattr(config, "conv_act", "tanh")
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size,
padding=(kernel_size - 1) // 2,
groups=groups,
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, residual_states, input_mask):
out = (
self.conv(hidden_states.permute(0, 2, 1).contiguous())
.permute(0, 2, 1)
.contiguous()
)
rmask = (1 - input_mask).bool()
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
out = ACT2FN[self.conv_act](self.dropout(out))
layer_norm_input = residual_states + out
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
if input_mask is None:
output_states = output
else:
if input_mask.dim() != layer_norm_input.dim():
if input_mask.dim() == 4:
input_mask = input_mask.squeeze(1).squeeze(1)
input_mask = input_mask.unsqueeze(2)
input_mask = input_mask.to(output.dtype)
output_states = output * input_mask
return output_states
class DebertaV2Encoder(nn.Module):
"""Modified BertEncoder with relative position bias support"""
def __init__(
self,
config,
ds_factor_attn,
ds_factor_ff,
dropout,
):
super().__init__()
self.layer = nn.ModuleList(
[
DebertaV2Layer(
config,
ds_factor_attn,
ds_factor_ff,
dropout,
_,
)
for _ in range(config.num_hidden_layers)
]
)
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.position_buckets = getattr(config, "position_buckets", -1)
pos_ebd_size = self.max_relative_positions * 2
if self.position_buckets > 0:
pos_ebd_size = self.position_buckets * 2
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
self.norm_rel_ebd = [
x.strip()
for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")
]
if "layer_norm" in self.norm_rel_ebd:
self.LayerNorm = LayerNorm(
config.hidden_size, config.layer_norm_eps, elementwise_affine=True
)
self.conv = (
ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
)
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
rel_embeddings = self.LayerNorm(rel_embeddings)
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(
-2
).unsqueeze(-1)
attention_mask = attention_mask.byte()
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = (
query_states.size(-2)
if query_states is not None
else hidden_states.size(-2)
)
relative_pos = build_relative_position(
q,
hidden_states.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
)
return relative_pos
def forward(
self,
temporal_factor,
hidden_states,
attention_mask,
output_hidden_states=True,
output_attentions=False,
query_states=None,
relative_pos=None,
return_dict=True,
train_mode=True
):
if attention_mask.dim() <= 2:
input_mask = attention_mask
else:
input_mask = (attention_mask.sum(-2) > 0).byte()
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
output_states = next_kv
loss_moe = 0
loads = []
embeddings = []
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
output_states, _, load = layer_module(
temporal_factor,
next_kv,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
train_mode=train_mode
)
if isinstance(load, torch.Tensor):
loads.append(load)
if _:
loss_moe = loss_moe + _
if output_attentions:
output_states, att_m = output_states
if i == 0 and self.conv is not None:
output_states = self.conv(hidden_states, output_states, input_mask)
if query_states is not None:
query_states = output_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = output_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if not return_dict:
return tuple(
v
for v in [output_states, all_hidden_states, all_attentions]
if v is not None
)
if len(loads)>0:
loads = torch.stack(loads, dim = 0)
if len(embeddings) >0:
embeddings = torch.cat(embeddings, dim=0)
return BaseModelOutput(
last_hidden_state=output_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
loss_moe=loss_moe,
loads=loads
)
def make_log_bucket_position(relative_pos, bucket_size, max_position):
sign = np.sign(relative_pos)
mid = bucket_size // 2
abs_pos = np.where(
(relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos)
)
log_pos = (
np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1))
+ mid
)
bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int64)
return bucket_pos
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
"""
Build relative position according to the query and key
We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key
:math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} =
P_q - P_k`
Args:
query_size (int): the length of query
key_size (int): the length of key
bucket_size (int): the size of position bucket
max_position (int): the maximum allowed absolute position
Return:
:obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
"""
q_ids = np.arange(0, query_size)
k_ids = np.arange(0, key_size)
rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1))
if bucket_size > 0 and max_position > 0:
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
rel_pos_ids = rel_pos_ids[:query_size, :]
rel_pos_ids = rel_pos_ids.unsqueeze(0)
return rel_pos_ids
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
return c2p_pos.expand(
[
query_layer.size(0),
query_layer.size(1),
query_layer.size(2),
relative_pos.size(-1),
]
)
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
return c2p_pos.expand(
[
query_layer.size(0),
query_layer.size(1),
key_layer.size(-2),
key_layer.size(-2),
]
)
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
return pos_index.expand(
p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))
)
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (:obj:`DebertaV2Config`):
A model config class instance with the configuration to build a new model. The schema is similar to
`BertConfig`, for more details, please refer :class:`~transformers.DebertaV2Config`
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
_attention_head_size = config.hidden_size // config.num_attention_heads
self.attention_head_size = getattr(
config, "attention_head_size", _attention_head_size
)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.share_att_key = getattr(config, "share_att_key", False)
self.pos_att_type = (
config.pos_att_type if config.pos_att_type is not None else []
)
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.position_buckets = getattr(config, "position_buckets", -1)
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_ebd_size = self.max_relative_positions
if self.position_buckets > 0:
self.pos_ebd_size = self.position_buckets
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
if not self.share_att_key:
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
self.pos_key_proj = nn.Linear(
config.hidden_size, self.all_head_size, bias=True
)
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
self.pos_query_proj = nn.Linear(
config.hidden_size, self.all_head_size
)
self.dropout = StableDropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x, attention_heads):
new_x_shape = x.size()[:-1] + (attention_heads, -1)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
def forward(
self,
hidden_states,
attention_mask,
return_att=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
"""
Call the module
Args:
hidden_states (:obj:`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
`Attention(Q,K,V)`
attention_mask (:obj:`torch.ByteTensor`):
An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum
sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j`
th token.
return_att (:obj:`bool`, optional):
Whether return the attention matrix.
query_states (:obj:`torch.FloatTensor`, optional):
The `Q` state in `Attention(Q,K,V)`.
relative_pos (:obj:`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with
values ranging in [`-max_relative_positions`, `max_relative_positions`].
rel_embeddings (:obj:`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [:math:`2 \\times
\\text{max_relative_positions}`, `hidden_size`].
"""
if query_states is None:
query_states = hidden_states
query_layer = self.transpose_for_scores(
self.query_proj(query_states), self.num_attention_heads
)
key_layer = self.transpose_for_scores(
self.key_proj(hidden_states), self.num_attention_heads
)
value_layer = self.transpose_for_scores(
self.value_proj(hidden_states), self.num_attention_heads
)
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1
if "c2p" in self.pos_att_type:
scale_factor += 1
if "p2c" in self.pos_att_type:
scale_factor += 1
if "p2p" in self.pos_att_type:
scale_factor += 1
scale = math.sqrt(query_layer.size(-1) * scale_factor)
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_attention_bias(
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
)
if rel_att is not None:
attention_scores = attention_scores + rel_att
attention_scores = attention_scores
attention_scores = attention_scores.view(
-1,
self.num_attention_heads,
attention_scores.size(-2),
attention_scores.size(-1),
)
# bsz x height x length x dimension
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context_layer = torch.bmm(
attention_probs.view(
-1, attention_probs.size(-2), attention_probs.size(-1)
),
value_layer,
)
context_layer = (
context_layer.view(
-1,
self.num_attention_heads,
context_layer.size(-2),
context_layer.size(-1),
)
.permute(0, 2, 1, 3)
.contiguous()
)
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(*new_context_layer_shape)
if return_att:
return (context_layer, attention_probs)
else:
return context_layer
def disentangled_attention_bias(
self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
):
if relative_pos is None:
q = query_layer.size(-2)
relative_pos = build_relative_position(
q,
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bsz x height x query x key
elif relative_pos.dim() != 4:
raise ValueError(
f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}"
)
att_span = self.pos_ebd_size
relative_pos = relative_pos.long().to(query_layer.device)
rel_embeddings = rel_embeddings[
self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :
].unsqueeze(0)
if self.share_att_key:
pos_query_layer = self.transpose_for_scores(
self.query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
pos_key_layer = self.transpose_for_scores(
self.key_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
else:
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
pos_key_layer = self.transpose_for_scores(
self.pos_key_proj(rel_embeddings), self.num_attention_heads
).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
) # .split(self.all_head_size, dim=-1)
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
pos_query_layer = self.transpose_for_scores(
self.pos_query_proj(rel_embeddings), self.num_attention_heads
).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
) # .split(self.all_head_size, dim=-1)
score = 0
# content->position
if "c2p" in self.pos_att_type:
scale = math.sqrt(pos_key_layer.size(-1) * scale_factor)
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(
c2p_att,
dim=-1,
index=c2p_pos.squeeze(0).expand(
[query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]
),
)
score += c2p_att / scale
# position->content
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
scale = math.sqrt(pos_query_layer.size(-1) * scale_factor)
if key_layer.size(-2) != query_layer.size(-2):
r_pos = build_relative_position(
key_layer.size(-2),
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
).to(query_layer.device)
r_pos = r_pos.unsqueeze(0)
else:
r_pos = relative_pos
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
if query_layer.size(-2) != key_layer.size(-2):
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
if "p2c" in self.pos_att_type:
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
p2c_att = torch.gather(
p2c_att,
dim=-1,
index=p2c_pos.squeeze(0).expand(
[query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]
),
).transpose(-1, -2)
if query_layer.size(-2) != key_layer.size(-2):
p2c_att = torch.gather(
p2c_att,
dim=-2,
index=pos_index.expand(
p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))
),
)
score += p2c_att / scale
# position->position
if "p2p" in self.pos_att_type:
pos_query = pos_query_layer[:, :, att_span:, :]
p2p_att = torch.matmul(pos_query, pos_key_layer.transpose(-1, -2))
p2p_att = p2p_att.expand(query_layer.size()[:2] + p2p_att.size()[2:])
if query_layer.size(-2) != key_layer.size(-2):
p2p_att = torch.gather(
p2p_att,
dim=-2,
index=pos_index.expand(
query_layer.size()[:2] + (pos_index.size(-2), p2p_att.size(-1))
),
)
p2p_att = torch.gather(
p2p_att,
dim=-1,
index=c2p_pos.expand(
[
query_layer.size(0),
query_layer.size(1),
query_layer.size(2),
relative_pos.size(-1),
]
),
)
score += p2p_att
return score
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
class DebertaV2Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(
self,
config,
features_dim,
add_video_feat=False,
max_feats = 10
):
super().__init__()
pad_token_id = getattr(config, "pad_token_id", 0)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.word_embeddings = nn.Embedding(
config.vocab_size, self.embedding_size, padding_idx=pad_token_id
)
self.position_biased_input = getattr(config, "position_biased_input", True)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, self.embedding_size
) # it is used for the decoder anyway
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, self.embedding_size
)
if self.embedding_size != config.hidden_size:
self.embed_proj = nn.Linear(
self.embedding_size, config.hidden_size, bias=False
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
)
self.add_video_feat = add_video_feat
self.features_dim = features_dim
if self.features_dim:
self.linear_video = nn.Linear(features_dim, config.hidden_size)
if self.add_video_feat:
self.evl = EVLTransformer(max_feats, decoder_num_layers=1,
decoder_qkv_dim=768, add_video_feat=self.add_video_feat,
add_mask=True)
#self.evl = ConvNet()
def get_video_embedding(self, video, video_mask):
if self.add_video_feat:
video_g = self.evl(video, video_mask)
video_feat = self.linear_video(video)
video_feat_l = torch.cat([video_g, video_feat], dim = 1)
else:
video_feat_l = self.linear_video(video)
video_feat_tmp = video_feat_l * video_mask.unsqueeze(-1)
video_g = torch.sum(video_feat_tmp, dim = 1) / video_mask.sum(dim = 1, keepdim=True)
return video_g, video_feat_l
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
mask=None,
inputs_embeds=None,
video=None,
video_mask=None
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.features_dim and video is not None:
video_global, video = self.get_video_embedding(video, video_mask)
inputs_embeds = torch.cat([video, inputs_embeds], 1)
input_shape = inputs_embeds[:, :, 0].shape
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(
input_shape, dtype=torch.long, device=self.position_ids.device
)
if self.position_embeddings is not None:
position_embeddings = self.position_embeddings(position_ids.long())
else:
position_embeddings = torch.zeros_like(inputs_embeds)
embeddings = inputs_embeds
if self.position_biased_input:
embeddings = embeddings + position_embeddings
if self.config.type_vocab_size > 0:
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = embeddings + token_type_embeddings
if self.embedding_size != self.config.hidden_size:
embeddings = self.embed_proj(embeddings)
embeddings = self.LayerNorm(embeddings)
if mask is not None:
if mask.dim() != embeddings.dim():
if mask.dim() == 4:
mask = mask.squeeze(1).squeeze(1)
mask = mask.unsqueeze(2)
mask = mask.to(embeddings.dtype)
embeddings = embeddings * mask
embeddings = self.dropout(embeddings)
return {
"embeddings": embeddings,
"position_embeddings": position_embeddings,
"video_global": video_global
}
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
class DebertaV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DebertaV2Config
base_model_prefix = "deberta"
_keys_to_ignore_on_load_missing = ["position_ids"]
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
def __init__(self, config):
super().__init__(config)
self._register_load_state_dict_pre_hook(self._pre_load_hook)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _pre_load_hook(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""
Removes the classifier if it doesn't have the correct number of labels.
"""
self_state = self.state_dict()
if (
("classifier.weight" in self_state)
and ("classifier.weight" in state_dict)
and self_state["classifier.weight"].size()
!= state_dict["classifier.weight"].size()
):
print(
f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model "
f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint "
f"weights. You should train your model on new data."
)
del state_dict["classifier.weight"]
if "classifier.bias" in state_dict:
del state_dict["classifier.bias"]
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
class DebertaV2Model(DebertaV2PreTrainedModel):
def __init__(
self,
config,
max_feats=10,
features_dim=768,
freeze_lm=False,
ds_factor_attn=8,
ds_factor_ff=8,
ft_ln=False,
dropout=0.1,
add_video_feat = False,
freeze_ad=False,
):
super().__init__(config)
self.embeddings = DebertaV2Embeddings(
config,
features_dim,
add_video_feat,
max_feats
)
self.encoder = DebertaV2Encoder(
config,
ds_factor_attn,
ds_factor_ff,
dropout,
)
self.z_steps = 0
self.config = config
self.features_dim = features_dim
self.max_feats = max_feats
if freeze_lm:
for n, p in self.named_parameters():
#if (not "linear_video" in n) and (not "adapter" in n):
# if ft_ln and "LayerNorm" in n:
# continue
# else:
# p.requires_grad_(False)
if not freeze_ad:
if (not "evl" in n) and (not "linear_video" in n) and (not "adapter" in n) and (not "moe" in n):
if ft_ln and "LayerNorm" in n:
continue
else:
p.requires_grad_(False)
else:
if not "evl" in n:
p.requires_grad_(False)
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError(
"The prune function is not implemented in DeBERTa model."
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
video=None,
video_mask=None,
train_mode = True
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if self.features_dim and video is not None:
if video_mask is None:
video_shape = video[:, :, 0].size()
video_mask = torch.ones(video_shape, device=device)
attention_mask = torch.cat([video_mask, attention_mask], 1)
input_shape = attention_mask.size()
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
mask=attention_mask,
inputs_embeds=inputs_embeds,
video=video,
video_mask=video_mask[:, 1:] if video_mask.shape[1] != video.shape[1] else video_mask
)
embedding_output, position_embeddings, video_g = (
embedding_output["embeddings"],
embedding_output["position_embeddings"],
embedding_output["video_global"]
)
video_g = video_g.squeeze()
encoder_outputs = self.encoder(
video_g,
embedding_output,
attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
train_mode=train_mode
)
encoded_layers = encoder_outputs[1]
loss_moe =encoder_outputs.loss_moe
if self.z_steps > 1:
hidden_states = encoded_layers[-2]
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
query_states = encoded_layers[-1]
rel_embeddings = self.encoder.get_rel_embedding()
attention_mask = self.encoder.get_attention_mask(attention_mask)
rel_pos = self.encoder.get_rel_pos(embedding_output)
for layer in layers[1:]:
query_states = layer(
hidden_states,
attention_mask,
return_att=False,
query_states=query_states,
relative_pos=rel_pos,
rel_embeddings=rel_embeddings,
)
encoded_layers.append(query_states)
sequence_output = encoded_layers[-1]
if not return_dict:
return (sequence_output,) + encoder_outputs[
(1 if output_hidden_states else 2) :
]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states
if output_hidden_states
else None,
attentions=encoder_outputs.attentions,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
video_g=video_g,
loss_moe = loss_moe,
loads=encoder_outputs.loads
)
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(
self,
config,
max_feats=10,
features_dim=768,
freeze_lm=True,
freeze_mlm=True,
ds_factor_attn=8,
ds_factor_ff=8,
ft_ln=True,
dropout=0.1,
n_ans=0,
freeze_last=True,
add_video_feat = False,
freeze_ad=False,
add_temporal_trans = False
):
"""
:param config: BiLM configuration
:param max_feats: maximum number of frames used by the model
:param features_dim: embedding dimension of the visual features, set = 0 for text-only mode
:param freeze_lm: whether to freeze or not the language model (Transformer encoder + token embedder)
:param freeze_mlm: whether to freeze or not the MLM head
:param ds_factor_attn: downsampling factor for the adapter after self-attention, no adapter if set to 0
:param ds_factor_ff: downsampling factor for the adapter after feed-forward, no adapter if set to 0
:param ft_ln: whether to finetune or not the normalization layers
:param dropout: dropout probability in the adapter
:param n_ans: number of answers in the downstream vocabulary, set = 0 during cross-modal training
:param freeze_last: whether to freeze or not the answer embedding module
"""
super().__init__(config)
# self.clip, _ = clip.load("ViT-L/14")
# for p in self.clip.parameters():
# p.requires_grad_(False)
self.deberta = DebertaV2Model(
config,
max_feats,
features_dim,
freeze_lm,
ds_factor_attn,
ds_factor_ff,
ft_ln,
dropout,
add_video_feat,
freeze_ad
)
self.add_video_feat = add_video_feat
self.lm_predictions = DebertaV2OnlyMLMHead(config)
self.features_dim = features_dim
if freeze_mlm:
for n, p in self.lm_predictions.named_parameters():
if ft_ln and "LayerNorm" in n:
continue
else:
p.requires_grad_(False)
self.init_weights()
self.n_ans = n_ans
if n_ans:
self.answer_embeddings = nn.Embedding(
n_ans, self.deberta.embeddings.embedding_size
)
self.answer_bias = nn.Parameter(torch.zeros(n_ans))
if freeze_last:
self.answer_embeddings.requires_grad_(False)
self.answer_bias.requires_grad_(False)
def set_answer_embeddings(self, a2tok, freeze_last=True):
a2v = self.deberta.embeddings.word_embeddings(a2tok) # answer embeddings (ans_vocab_num, 1, dim)
pad_token_id = getattr(self.config, "pad_token_id", 0)
sum_tokens = (a2tok != pad_token_id).sum(1, keepdims=True) # n_ans (1000, 1) n_tokens
if len(a2v) != self.n_ans: # reinitialize the answer embeddings
assert not self.training
self.n_ans = len(a2v)
self.answer_embeddings = nn.Embedding(
self.n_ans, self.deberta.embeddings.embedding_size
).to(self.device)
self.answer_bias.requires_grad = False
self.answer_bias.resize_(self.n_ans)
self.answer_embeddings.weight.data = torch.div(
(a2v * (a2tok != pad_token_id).float()[:, :, None]).sum(1),
sum_tokens.clamp(min=1),
) # n_ans
a2b = self.lm_predictions.lm_head.bias[a2tok]
self.answer_bias.weight = torch.div(
(a2b * (a2tok != pad_token_id).float()).sum(1), sum_tokens.clamp(min=1)
)
if freeze_last:
self.answer_embeddings.requires_grad_(False)
self.answer_bias.requires_grad_(False)
def emd_context_layer(self, encoder_layers, z_states, attention_mask, encoder, temporal_factor, train_mode):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
att_mask = extended_attention_mask.byte()
attention_mask = att_mask * att_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
hidden_states = encoder_layers[-2]
if not self.config.position_biased_input:
layers = [encoder.layer[-1] for _ in range(2)]
z_states = z_states + hidden_states
query_states = z_states
query_mask = attention_mask
outputs = []
rel_embeddings = encoder.get_rel_embedding()
for layer in layers:
output = layer(
temporal_factor,
hidden_states,
query_mask,
return_att=False,
query_states=query_states,
relative_pos=None,
rel_embeddings=rel_embeddings,
train_mode=train_mode
)
query_states = output[0]
outputs.append(query_states)
else:
outputs = [encoder_layers[-1]]
return outputs
def forward(
self,
input_ids=None,
attention_mask=None,
labels=None,
video=None,
video_mask=None,
train_mode=False,
):
token_type_ids=None
position_ids=None
inputs_embeds=None
output_attentions=None
return_dict=None
mlm=False
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# rand_video = torch.randn(1,30,3,224,224).cuda()
# video = self.clip.encode_image(rand_video.squeeze()).unsqueeze(0)
# video = video.to(torch.float)
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
video=video,
video_mask=video_mask,
train_mode = train_mode
)
loss_moe = outputs['loss_moe']
if labels is not None:
if (
self.features_dim and video is not None
): # ignore the label predictions for visual tokens
video_shape = video[:, :, 0].size()
# add video_general
if self.add_video_feat:
video_shape = (video_shape[0], video_shape[1] + 1)
video_labels = torch.tensor(
[[-100] * video_shape[1]] * video_shape[0],
dtype=torch.long,
device=labels.device,
)
labels = torch.cat([video_labels, labels], 1)
# sequence_output = outputs[0]
modified = self.emd_context_layer(
encoder_layers=outputs["hidden_states"],
z_states=outputs["position_embeddings"].repeat(
input_ids.shape[0] // len(outputs["position_embeddings"]), 1, 1
),
attention_mask=outputs["attention_mask"],
encoder=self.deberta.encoder,
temporal_factor=outputs["video_g"],
train_mode = train_mode
)
bias = None
if self.n_ans and (not mlm): # downstream mode
embeddings = self.answer_embeddings.weight
bias = self.answer_bias
else:
embeddings = self.deberta.embeddings.word_embeddings.weight
prediction_scores = self.lm_predictions(modified[-1], embeddings, bias)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size),
labels.view(-1), # labels[labels > 0].view(-1)
)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return (
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
)
return MaskedLMOutput(
loss_moe=loss_moe,
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
loads=outputs.loads,
embeddings=outputs.video_g
)
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
class DebertaV2PredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
class DebertaV2LMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
def forward(self, hidden_states, embedding_weight, bias=None):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
if bias is not None:
logits = (
torch.matmul(hidden_states, embedding_weight.t().to(hidden_states))
+ bias
)
else:
logits = (
torch.matmul(hidden_states, embedding_weight.t().to(hidden_states))
+ self.bias
)
return logits
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
class DebertaV2OnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
# self.predictions = DebertaV2LMPredictionHead(config)
self.lm_head = DebertaV2LMPredictionHead(config)
def forward(self, sequence_output, embedding_weight, bias=None):
prediction_scores = self.lm_head(sequence_output, embedding_weight, bias=bias)
return prediction_scores