Spaces:
Running
on
T4
Running
on
T4
File size: 6,219 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
#include <stdio.h>
#include <assert.h>
#define MIN_VALUE (-1e38)
template <typename F>
__global__ void kernel_forward(
const int B, const int T, const int C, const F *__restrict__ const _w, const F *__restrict__ const _u,
const F *__restrict__ const _k, const F *__restrict__ const _v, F *__restrict__ const _y
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
F aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
template <typename F>
__global__ void kernel_forward_with_state(
const int B, const int T, const int C, const F *__restrict__ const _w, const F *__restrict__ const _u,
const F *__restrict__ const _k, const F *__restrict__ const _v, F *__restrict__ const _y, F *__restrict__ const _s
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset_s = _b * C * 3 + _c * 3;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
F *__restrict__ const s = _s + _offset_s;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
F aa = s[0], bb = s[1], pp = s[2];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
s[0] = aa;
s[1] = bb;
s[2] = pp;
}
template <typename F>
__global__ void kernel_backward(
const int B, const int T, const int C, const F *__restrict__ const _w, const F *__restrict__ const _u,
const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ const _y,
const F *__restrict__ const _gy, F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk,
F *__restrict__ const _gv
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
const F *__restrict__ const y = _y + _offset;
const F *__restrict__ const gy = _gy + _offset;
F *__restrict__ const gk = _gk + _offset;
F *__restrict__ const gv = _gv + _offset;
F q[Tmax], r[Tmax];
F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
const F qq = gy[ii] / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = gu;
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
const F qq = q[i];
const F rr = r[i];
F e1 = qq * exp(rr);
F e2 = exp(kk + pp);
gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
gv[ii] = e1 + e2 * aa;
const F ww = w + pp;
const F www = rr - u - kk;
const F p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_forward_with_state(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *s) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward_with_state<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, s);
}
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}
|