Spaces:
Running
on
T4
Running
on
T4
File size: 19,105 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
from abc import ABC, abstractmethod
from typing import List, Optional
class Constraint(ABC):
r"""Abstract base class for all constraints that can be applied during generation.
It must define how the constraint can be satisfied.
All classes that inherit Constraint must follow the requirement that
```py
completed = False
while not completed:
_, completed = constraint.update(constraint.advance())
```
will always terminate (halt).
"""
def __init__(self):
# test for the above condition
self.test()
def test(self):
"""
Tests whether this constraint has been properly defined.
"""
counter = 0
completed = False
while not completed:
if counter == 1:
self.reset()
advance = self.advance()
if not self.does_advance(advance):
raise Exception(
"Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true."
)
stepped, completed, reset = self.update(advance)
counter += 1
if counter > 10000:
raise Exception("update() does not fulfill the constraint.")
if self.remaining() != 0:
raise Exception("Custom Constraint is not defined correctly.")
@abstractmethod
def advance(self):
"""
When called, returns the token that would take this constraint one step closer to being fulfilled.
Return:
token_ids(`torch.tensor`): Must be a tensor of a list of indexable tokens, not some integer.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
@abstractmethod
def does_advance(self, token_id: int):
"""
Reads in a token and returns whether it creates progress.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
@abstractmethod
def update(self, token_id: int):
"""
Reads in a token and returns booleans that indicate the progress made by it. This function will update the
state of this object unlikes `does_advance(self, token_id: int)`.
This isn't to test whether a certain token will advance the progress; it's to update its state as if it has
been generated. This becomes important if token_id != desired token (refer to else statement in
PhrasalConstraint)
Args:
token_id(`int`):
The id of a newly generated token in the beam search.
Return:
stepped(`bool`):
Whether this constraint has become one step closer to being fulfuilled.
completed(`bool`):
Whether this constraint has been completely fulfilled by this token being generated.
reset (`bool`):
Whether this constraint has reset its progress by this token being generated.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
@abstractmethod
def reset(self):
"""
Resets the state of this constraint to its initialization. We would call this in cases where the fulfillment of
a constraint is abrupted by an unwanted token.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
@abstractmethod
def remaining(self):
"""
Returns the number of remaining steps of `advance()` in order to complete this constraint.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
@abstractmethod
def copy(self, stateful=False):
"""
Creates a new instance of this constraint.
Args:
stateful(`bool`): Whether to not only copy the constraint for new instance, but also its state.
Return:
constraint(`Constraint`): The same constraint as the one being called from.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class PhrasalConstraint(Constraint):
r"""
[`Constraint`] enforcing that an ordered sequence of tokens is included in the output.
Args:
token_ids (`List[int]`):
The id of the token that must be generated by the output.
"""
def __init__(self, token_ids: List[int]):
super(Constraint, self).__init__()
if not isinstance(token_ids, list) or len(token_ids) == 0:
raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}.")
if any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids):
raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.")
self.token_ids = token_ids
self.seqlen = len(self.token_ids)
self.fulfilled_idx = -1 # the index of the currently fulfilled step
self.completed = False
def advance(self):
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def does_advance(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def update(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
stepped = False
completed = False
reset = False
if self.does_advance(token_id):
self.fulfilled_idx += 1
stepped = True
if self.fulfilled_idx == (self.seqlen - 1):
completed = True
self.completed = completed
else:
# failed to make progress.
reset = True
self.reset()
return stepped, completed, reset
def reset(self):
self.completed = False
self.fulfilled_idx = 0
def remaining(self):
return self.seqlen - (self.fulfilled_idx + 1)
def copy(self, stateful=False):
new_constraint = PhrasalConstraint(self.token_ids)
if stateful:
new_constraint.seq_len = self.seqlen
new_constraint.fulfilled_idx = self.fulfilled_idx
new_constraint.completed = self.completed
return new_constraint
class DisjunctiveTrie:
def __init__(self, nested_token_ids: List[List[int]], no_subsets=True):
r"""
A helper class that builds a trie with the words represented in `nested_token_ids`.
"""
self.max_height = max([len(one) for one in nested_token_ids])
root = {}
for token_ids in nested_token_ids:
level = root
for tidx, token_id in enumerate(token_ids):
if token_id not in level:
level[token_id] = {}
level = level[token_id]
if no_subsets and self.has_subsets(root, nested_token_ids):
raise ValueError(
"Each list in `nested_token_ids` can't be a complete subset of another list, but is"
f" {nested_token_ids}."
)
self.trie = root
def next_tokens(self, current_seq):
"""
The next possible tokens that will progress the trie, given the current sequence of tokens in `current_seq`.
"""
start = self.trie
for current_token in current_seq:
start = start[current_token]
next_tokens = list(start.keys())
return next_tokens
def reached_leaf(self, current_seq):
next_tokens = self.next_tokens(current_seq)
return len(next_tokens) == 0
def count_leaves(self, root):
next_nodes = list(root.values())
if len(next_nodes) == 0:
return 1
else:
return sum([self.count_leaves(nn) for nn in next_nodes])
def has_subsets(self, trie, nested_token_ids):
"""
Returns whether # of leaves == # of words. Otherwise some word is a subset of another.
"""
leaf_count = self.count_leaves(trie)
return len(nested_token_ids) != leaf_count
class DisjunctiveConstraint(Constraint):
r"""
A special [`Constraint`] that is fulfilled by fulfilling just one of several constraints.
Args:
nested_token_ids (`List[List[int]]`):
A list of words, where each word is a list of ids. This constraint is fulfilled by generating just one from
the list of words.
"""
def __init__(self, nested_token_ids: List[List[int]]):
super(Constraint, self).__init__()
if not isinstance(nested_token_ids, list) or len(nested_token_ids) == 0:
raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.")
if any(not isinstance(token_ids, list) for token_ids in nested_token_ids):
raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.")
if any(
any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
for token_ids in nested_token_ids
):
raise ValueError(
f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}."
)
self.trie = DisjunctiveTrie(nested_token_ids)
self.token_ids = nested_token_ids
self.seqlen = self.trie.max_height
self.current_seq = []
self.completed = False
def advance(self):
token_list = self.trie.next_tokens(self.current_seq)
if len(token_list) == 0:
return None
else:
return token_list
def does_advance(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
next_tokens = self.trie.next_tokens(self.current_seq)
return token_id in next_tokens
def update(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
stepped = False
completed = False
reset = False
if self.does_advance(token_id):
self.current_seq.append(token_id)
stepped = True
else:
reset = True
self.reset()
completed = self.trie.reached_leaf(self.current_seq)
self.completed = completed
return stepped, completed, reset
def reset(self):
self.completed = False
self.current_seq = []
def remaining(self):
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq)
def copy(self, stateful=False):
new_constraint = DisjunctiveConstraint(self.token_ids)
if stateful:
new_constraint.seq_len = self.seqlen
new_constraint.current_seq = self.current_seq
new_constraint.completed = self.completed
return new_constraint
class ConstraintListState:
r"""
A class for beam scorers to track its progress through a list of constraints.
Args:
constraints (`List[Constraint]`):
A list of [`Constraint`] objects that must be fulfilled by the beam scorer.
"""
def __init__(self, constraints: List[Constraint]):
self.constraints = constraints
# max # of steps required to fulfill a given constraint
self.max_seqlen = max([c.seqlen for c in constraints])
self.n_constraints = len(constraints)
self.completed = False
self.init_state()
def init_state(self):
self.complete_constraints = []
self.inprogress_constraint = None
self.pending_constraints = [constraint.copy(stateful=False) for constraint in self.constraints]
def get_bank(self):
add = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints) * self.max_seqlen) + add
def advance(self):
"""The list of tokens to generate such that we can make progress.
By "list" we don't mean the list of token that will fully fulfill a constraint.
Given constraints `c_i = {t_ij | j == # of tokens}`, If we're not in the middle of progressing through a
specific constraint `c_i`, we return:
`[t_k1 for k in indices of unfulfilled constraints]`
If we are in the middle of a constraint, then we return:
`[t_ij]`, where `i` is the index of the inprogress constraint, `j` is the next step for the constraint.
Though we don't care which constraint is fulfilled first, if we are in the progress of fulfilling a constraint,
that's the only one we'll return.
"""
token_list = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
advance = constraint.advance()
if isinstance(advance, int):
token_list.append(advance)
elif isinstance(advance, list):
token_list.extend(advance)
else:
advance = self.inprogress_constraint.advance()
if isinstance(advance, int):
token_list.append(advance)
elif isinstance(advance, list):
token_list.extend(advance)
if len(token_list) == 0:
return None
else:
return token_list
def reset(self, token_ids: Optional[List[int]]):
"""
token_ids: the tokens generated thus far to reset the state of the progress through constraints.
"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
complete, stepped = self.add(token)
# the entire list of constraints are fulfilled
if self.completed:
break
def add(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`.")
complete, stepped = False, False
if self.completed:
complete = True
stepped = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
stepped, complete, reset = self.inprogress_constraint.update(token_id)
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=False))
self.inprogress_constraint = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint)
self.inprogress_constraint = None
if len(self.pending_constraints) == 0:
# we're done!
self.completed = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints):
if pending_constraint.does_advance(token_id):
stepped, complete, reset = pending_constraint.update(token_id)
if not stepped:
raise Exception(
"`constraint.update(token_id)` is not yielding incremental progress, "
"even though `constraint.does_advance(token_id)` is true."
)
if complete:
self.complete_constraints.append(pending_constraint)
self.inprogress_constraint = None
if not complete and stepped:
self.inprogress_constraint = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
self.pending_constraints = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
self.completed = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def copy(self, stateful=True):
new_state = ConstraintListState(self.constraints) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
new_state.complete_constraints = [
constraint.copy(stateful=True) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
new_state.inprogress_constraint = self.inprogress_constraint.copy(stateful=True)
new_state.pending_constraints = [constraint.copy() for constraint in self.pending_constraints]
return new_state
|