File size: 15,876 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" AutoProcessor class."""
import importlib
import inspect
import json
import os
import warnings
from collections import OrderedDict
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...image_processing_utils import ImageProcessingMixin
from ...tokenization_utils import TOKENIZER_CONFIG_FILE
from ...utils import FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
from .feature_extraction_auto import AutoFeatureExtractor
from .image_processing_auto import AutoImageProcessor
from .tokenization_auto import AutoTokenizer
logger = logging.get_logger(__name__)
PROCESSOR_MAPPING_NAMES = OrderedDict(
[
("align", "AlignProcessor"),
("altclip", "AltCLIPProcessor"),
("bark", "BarkProcessor"),
("blip", "BlipProcessor"),
("blip-2", "Blip2Processor"),
("bridgetower", "BridgeTowerProcessor"),
("chinese_clip", "ChineseCLIPProcessor"),
("clap", "ClapProcessor"),
("clip", "CLIPProcessor"),
("clipseg", "CLIPSegProcessor"),
("flava", "FlavaProcessor"),
("git", "GitProcessor"),
("groupvit", "CLIPProcessor"),
("hubert", "Wav2Vec2Processor"),
("idefics", "IdeficsProcessor"),
("instructblip", "InstructBlipProcessor"),
("layoutlmv2", "LayoutLMv2Processor"),
("layoutlmv3", "LayoutLMv3Processor"),
("markuplm", "MarkupLMProcessor"),
("mctct", "MCTCTProcessor"),
("mgp-str", "MgpstrProcessor"),
("oneformer", "OneFormerProcessor"),
("owlvit", "OwlViTProcessor"),
("pix2struct", "Pix2StructProcessor"),
("pop2piano", "Pop2PianoProcessor"),
("sam", "SamProcessor"),
("sew", "Wav2Vec2Processor"),
("sew-d", "Wav2Vec2Processor"),
("speech_to_text", "Speech2TextProcessor"),
("speech_to_text_2", "Speech2Text2Processor"),
("speecht5", "SpeechT5Processor"),
("trocr", "TrOCRProcessor"),
("tvlt", "TvltProcessor"),
("unispeech", "Wav2Vec2Processor"),
("unispeech-sat", "Wav2Vec2Processor"),
("vilt", "ViltProcessor"),
("vision-text-dual-encoder", "VisionTextDualEncoderProcessor"),
("wav2vec2", "Wav2Vec2Processor"),
("wav2vec2-conformer", "Wav2Vec2Processor"),
("wavlm", "Wav2Vec2Processor"),
("whisper", "WhisperProcessor"),
("xclip", "XCLIPProcessor"),
]
)
PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, PROCESSOR_MAPPING_NAMES)
def processor_class_from_name(class_name: str):
for module_name, processors in PROCESSOR_MAPPING_NAMES.items():
if class_name in processors:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for processor in PROCESSOR_MAPPING._extra_content.values():
if getattr(processor, "__name__", None) == class_name:
return processor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
class AutoProcessor:
r"""
This is a generic processor class that will be instantiated as one of the processor classes of the library when
created with the [`AutoProcessor.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoProcessor is designed to be instantiated "
"using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(PROCESSOR_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the processor classes of the library from a pretrained model vocabulary.
The processor class to instantiate is selected based on the `model_type` property of the config object (either
passed as an argument or loaded from `pretrained_model_name_or_path` if possible):
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a processor files saved using the `save_pretrained()` method,
e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the feature extractor files and override the cached versions
if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final feature extractor object. If `True`, then this
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are feature extractor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Examples:
```python
>>> from transformers import AutoProcessor
>>> # Download processor from huggingface.co and cache.
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*)
>>> # processor = AutoProcessor.from_pretrained("./test/saved_model/")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs["_from_auto"] = True
processor_class = None
processor_auto_map = None
# First, let's see if we have a preprocessor config.
# Filter the kwargs for `get_file_from_repo`.
get_file_from_repo_kwargs = {
key: kwargs[key] for key in inspect.signature(get_file_from_repo).parameters.keys() if key in kwargs
}
# Let's start by checking whether the processor class is saved in an image processor
preprocessor_config_file = get_file_from_repo(
pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **get_file_from_repo_kwargs
)
if preprocessor_config_file is not None:
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
processor_class = config_dict.get("processor_class", None)
if "AutoProcessor" in config_dict.get("auto_map", {}):
processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
# If not found, let's check whether the processor class is saved in a feature extractor config
if preprocessor_config_file is not None and processor_class is None:
config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
processor_class = config_dict.get("processor_class", None)
if "AutoProcessor" in config_dict.get("auto_map", {}):
processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
if processor_class is None:
# Next, let's check whether the processor class is saved in a tokenizer
tokenizer_config_file = get_file_from_repo(
pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **get_file_from_repo_kwargs
)
if tokenizer_config_file is not None:
with open(tokenizer_config_file, encoding="utf-8") as reader:
config_dict = json.load(reader)
processor_class = config_dict.get("processor_class", None)
if "AutoProcessor" in config_dict.get("auto_map", {}):
processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
if processor_class is None:
# Otherwise, load config, if it can be loaded.
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
# And check if the config contains the processor class.
processor_class = getattr(config, "processor_class", None)
if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map:
processor_auto_map = config.auto_map["AutoProcessor"]
if processor_class is not None:
processor_class = processor_class_from_name(processor_class)
has_remote_code = processor_auto_map is not None
has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
processor_class = get_class_from_dynamic_module(
processor_auto_map, pretrained_model_name_or_path, **kwargs
)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
processor_class.register_for_auto_class()
return processor_class.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
elif processor_class is not None:
return processor_class.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
# Last try: we use the PROCESSOR_MAPPING.
elif type(config) in PROCESSOR_MAPPING:
return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs)
# At this stage, there doesn't seem to be a `Processor` class available for this model, so let's try a
# tokenizer.
try:
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
except Exception:
try:
return AutoImageProcessor.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
except Exception:
pass
try:
return AutoFeatureExtractor.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
except Exception:
pass
raise ValueError(
f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a "
"tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains"
"the files of at least one of those processing classes."
)
@staticmethod
def register(config_class, processor_class, exist_ok=False):
"""
Register a new processor for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
processor_class ([`FeatureExtractorMixin`]): The processor to register.
"""
PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok)
|