File size: 37,764 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CPMAnt"""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_cpmant import CpmAntConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openbmb/cpm-ant-10b"
_CONFIG_FOR_DOC = "CpmAntConfig"
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openbmb/cpm-ant-10b",
# See all CPMAnt models at https://huggingface.co/models?filter=cpmant
]
class CpmAntLayerNorm(nn.Module):
"""
We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details."
"""
def __init__(self, config: CpmAntConfig):
super().__init__()
self.eps = config.eps
self.dim_norm = config.hidden_size
self.weight = nn.Parameter(torch.empty(config.hidden_size))
def forward(self, hidden_states: torch.Tensor):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
"""
if hidden_states.size(-1) != self.dim_norm:
raise AssertionError("hidden_states.size(-1) != self.dim_norm")
old_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight
return hidden_states
class CpmAntAttention(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.dim_model = config.hidden_size
self.num_heads = config.num_attention_heads
self.dim_head = config.dim_head
self.project_q = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False)
self.project_k = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False)
self.project_v = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False)
self.attention_out = nn.Linear(self.num_heads * self.dim_head, self.dim_model, bias=False)
self.softmax = torch.nn.Softmax(dim=-1)
if config.dropout_p is not None:
self.dropout = torch.nn.Dropout(p=config.dropout_p)
else:
self.dropout = None
def forward(
self,
hidden_q: torch.Tensor,
hidden_kv: torch.Tensor,
attention_mask: torch.BoolTensor,
position_bias: torch.Tensor,
output_attentions: Optional[bool] = False,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_q (`torch.Tensor`):
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)):
Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)`
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Avoid invalid areas to participate in the calculation of self-attention.
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Provide positional information to self-attention block.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*):
Cached past key and value projection states.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
batch_size = hidden_q.size(0)
len_q = hidden_q.size(1)
len_k = hidden_kv.size(1)
query = self.project_q(hidden_q)
key = self.project_k(hidden_kv)
value = self.project_v(hidden_kv)
query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
if past_key_values is not None:
key = torch.cat([past_key_values[0], key], dim=-2)
value = torch.cat([past_key_values[1], value], dim=-2)
len_k = key.size(-2)
# (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k)
score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head)
score = score + position_bias
score = torch.masked_fill(
score,
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype),
)
score = self.softmax(score)
score = torch.masked_fill(
score,
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
torch.scalar_tensor(0, device=score.device, dtype=score.dtype),
)
if output_attentions:
attn_weights = score
else:
attn_weights = None
if self.dropout is not None:
score = self.dropout(score)
# (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head)
score = torch.matmul(score, value)
score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3)
score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head)
score = self.attention_out(score)
past_key_values = None
if use_cache:
past_key_values = (key, value)
return score, attn_weights, past_key_values
class CpmAntSelfAttentionBlock(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.layernorm_before_attention = CpmAntLayerNorm(config)
self.self_attention = CpmAntAttention(config)
if config.dropout_p:
self.dropout = torch.nn.Dropout(config.dropout_p)
else:
self.dropout = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_bias: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Avoid invalid areas to participate in the calculation of self-attention.
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Provide positional information to self-attention block.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
past_key_values (`Tuple(torch.FloatTensor)`, *optional*):
Cached past key and value projection states.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
outputs = self.layernorm_before_attention(hidden_states)
outputs = self.self_attention(
outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache
)
outputs, attn_weights, current_key_value = outputs
if self.dropout is not None:
outputs = self.dropout(outputs)
hidden_states = hidden_states + outputs
return hidden_states, attn_weights, current_key_value
class CpmAntDenseGatedACT(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.w_0 = nn.Linear(config.hidden_size, config.dim_ff, bias=False)
self.w_1 = nn.Linear(config.hidden_size, config.dim_ff, bias=False)
self.act = torch.nn.GELU()
def forward(self, hidden_states: torch.Tensor):
"""Transform an input tensor from one feature space to another via a nonlinear operation
Args:
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
"""
gate_score = self.act(self.w_0(hidden_states))
hidden_states = self.w_1(hidden_states)
hidden_states = gate_score * hidden_states
return hidden_states
class CpmAntFeedForward(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.w_in = CpmAntDenseGatedACT(config)
if config.dropout_p is not None:
self.dropout = torch.nn.Dropout(config.dropout_p)
else:
self.dropout = None
self.w_out = nn.Linear(config.dim_ff, config.hidden_size, bias=False)
def forward(self, hidden_states: torch.Tensor):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
"""
hidden_states = self.w_in(hidden_states)
if self.dropout is not None:
hidden_states = self.dropout(hidden_states)
hidden_states = self.w_out(hidden_states)
return hidden_states
class CpmAntFFNBlock(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.layernorm_before_ffn = CpmAntLayerNorm(config)
self.ffn = CpmAntFeedForward(config)
if config.dropout_p:
self.dropout = torch.nn.Dropout(config.dropout_p)
else:
self.dropout = None
def forward(
self,
hidden_states: torch.Tensor,
):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
Hidden states before feed forward layer.
"""
ln_outputs = self.layernorm_before_ffn(hidden_states)
outputs = self.ffn(ln_outputs)
if self.dropout is not None:
outputs = self.dropout(outputs)
hidden_states = hidden_states + outputs
return hidden_states
class CpmAntTransformerBlock(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.self_att = CpmAntSelfAttentionBlock(config)
self.ffn = CpmAntFFNBlock(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_bias: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_states (`torch.Tensor`):
Input to the layer of shape `(batch, seq_len, dim_model)`
attention_mask (`torch.Tensor`):
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
position_bias (`torch.Tensor`):
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
Cached past key and value projection states
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
hidden_states = self.self_att(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
past_key_values=past_key_values,
use_cache=use_cache,
)
hidden_states, attn_weights, current_key_value = hidden_states
hidden_states = self.ffn(hidden_states)
return hidden_states, attn_weights, current_key_value
class CpmAntEncoder(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.num_layers = config.num_hidden_layers
self.layers = nn.ModuleList([CpmAntTransformerBlock(config) for ith in range(self.num_layers)])
self.output_layernorm = CpmAntLayerNorm(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_bias: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_states (`torch.Tensor`):
Input to the layer of shape `(batch, seq_len, dim_model)`
attention_mask (`torch.Tensor`):
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
position_bias (`torch.Tensor`):
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
Cached past key and value projection states
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
current_key_values = () if use_cache else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
position_bias,
output_attentions=output_attentions,
past_key_values=past_key_values[i] if past_key_values else None,
use_cache=use_cache,
)
hidden_states, attn_weights, current_key_value = layer_outputs
if output_attentions:
all_self_attns += (attn_weights,)
if current_key_value is not None:
current_key_values = current_key_values + (current_key_value,)
hidden_states = self.output_layernorm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return hidden_states, current_key_values, all_hidden_states, all_self_attns
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->CPMAnt
class CpmAntIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class CpmAntSegmentPositionEmbedding(nn.Module):
def __init__(self, config: CpmAntConfig):
super().__init__()
self.num_heads = config.num_attention_heads
self.num_buckets = config.position_bias_num_buckets
self.max_distance = config.position_bias_max_distance
self.num_segments = config.segment_types
self.relative_attention_bias = nn.Parameter(
torch.empty(
config.segment_types * config.segment_types + config.position_bias_num_buckets,
config.num_attention_heads,
)
)
def forward(
self,
key_pos: torch.Tensor,
query_pos: torch.Tensor,
key_segment: torch.Tensor,
query_segment: torch.Tensor,
):
with torch.no_grad():
batch = key_pos.size(0)
keylen = key_pos.size(1)
querylen = query_pos.size(1)
if key_pos.size(0) != query_pos.size(0):
raise AssertionError(
f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!"
)
if keylen != key_segment.size(1) or querylen != query_segment.size(1):
raise AssertionError(
f"keylen should be equal to key_segment.size(1), but got {keylen} and {key_segment.size(1)}!"
)
if querylen != query_segment.size(1):
raise AssertionError(
f"querylen should be equal to query_segment.size(1), but got {querylen} and {query_segment.szie(1)}!"
)
key_pos = key_pos.view(batch, -1, keylen)
query_pos = query_pos.view(batch, querylen, -1)
key_segment = key_segment.view(batch, -1, keylen)
query_segment = query_segment.view(batch, querylen, -1)
relative_position_bucket = self._segment_relative_position_bucket(query_segment, key_segment)
relative_position_bucket = relative_position_bucket + self.num_buckets
# (batch, len_q, len_k)
absolute_position_bucket = self._position_bucket(
torch.arange(keylen, dtype=torch.int32, device=relative_position_bucket.device)[None, :]
- torch.arange(querylen, dtype=torch.int32, device=relative_position_bucket.device)[:, None],
num_buckets=self.num_buckets,
max_distance=self.max_distance,
)
relative_position_bucket = torch.where(
(key_segment == query_segment),
absolute_position_bucket[None, :, :],
relative_position_bucket,
)
# (batch, len_q, len_k, num_heads)
embeds = F.embedding(relative_position_bucket, self.relative_attention_bias)
# (batch, num_heads, len_q, len_k)
embeds = embeds.permute(0, 3, 1, 2).contiguous()
return embeds
def _segment_relative_position_bucket(self, query_segment, key_segment):
return query_segment * self.num_segments + key_segment
def _position_bucket(self, relative_position, num_buckets=32, max_distance=128):
relative_buckets = 0
# always bidirectional in CPMAnt
num_buckets //= 2
relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets
relative_position = torch.abs(relative_position)
max_exact = num_buckets // 2
is_small = relative_position < max_exact
relative_postion_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.int32)
relative_postion_if_large = torch.min(
relative_postion_if_large,
torch.full_like(relative_postion_if_large, num_buckets - 1),
)
relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large)
return relative_buckets
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMAnt
class CpmAntOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class CpmAntPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CpmAntConfig
base_model_prefix = "cpmant"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, CpmAntLayerNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, CpmAntSegmentPositionEmbedding):
module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, CpmAntEncoder):
module.gradient_checkpointing = value
CPMANT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters
config ([`~CpmAntConfig`]): Model configuration class with all the parameters of the
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CPMANT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare CPMAnt Model outputting raw hidden-states without any specific head on top.",
CPMANT_START_DOCSTRING,
)
class CpmAntModel(CpmAntPreTrainedModel):
def __init__(self, config: CpmAntConfig):
super().__init__(config)
self.encoder = CpmAntEncoder(config)
self.segment_embedding = nn.Embedding(config.segment_types, config.hidden_size)
self.input_embedding = nn.Embedding(
config.vocab_size + config.prompt_types * config.prompt_length, config.hidden_size
)
self.position_bias = CpmAntSegmentPositionEmbedding(config)
self.prompt_length = config.prompt_length
self.vocab_size = config.vocab_size
self.post_init()
def get_input_embeddings(self):
return self.input_embedding
def set_input_embeddings(self, embeddings, **kwargs):
self.input_embedding = embeddings
def _prepare_attention_mask(self, input_ids, span, context, length):
batch = input_ids.size(0)
seqlen = input_ids.size(1)
device = input_ids.device
directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(seqlen, device=device).view(-1, 1)
attention_mask = context[:, None, :] | (
context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen)
)
attention_mask = attention_mask & (span[:, None, :] == span[:, :, None])
# mask for left padding
mask_1d = (
torch.tensor(list(range(seqlen - self.prompt_length))[::-1], device=device)[None, :].repeat(batch, 1)
< length[:, None]
)
mask_1d = torch.cat((torch.ones(batch, self.prompt_length, device=device).bool(), mask_1d), dim=1)
attention_mask = mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask
return attention_mask
@add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
# add prompts ahead
if input_ids.dtype != torch.int32:
input_ids = input_ids.to(torch.int32)
dtype, device = input_ids.dtype, input_ids.device
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device)
length = (segment != 0).sum(-1).to(dtype=dtype, device=device)
input_ids = torch.cat(
(
torch.arange(
self.prompt_length * 2 + self.vocab_size,
self.prompt_length * 3 + self.vocab_size,
dtype=dtype,
device=device,
).repeat(input_ids.size(0), 1),
input_ids,
),
dim=1,
)
batch, seq_length = input_ids.size()
segment = torch.cat((torch.zeros(batch, self.prompt_length, dtype=dtype, device=device), segment), dim=1)
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device)
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
span = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * self.encoder.num_layers)
input_ids = input_ids.contiguous()
hidden_states = self.input_embedding(input_ids)
segment_states = self.segment_embedding(segment)
hidden_states = hidden_states + segment_states
else:
past_length = past_key_values[0][0].size(-2)
segment_states = self.segment_embedding(segment)
hidden_states = self.input_embedding(input_ids) + segment_states[:, -1:, :]
attention_mask = self._prepare_attention_mask(input_ids, span, context, length)
position_bias = self.position_bias(position, position, segment, segment)
attention_mask = attention_mask[:, past_length:, :]
position_bias = position_bias[:, :, past_length:, :]
hidden_states = hidden_states[:, past_length:, :]
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder(
hidden_states,
attention_mask,
position_bias,
output_attentions,
output_hidden_states,
past_key_values,
use_cache,
)
if past_length == 0:
hidden_states = hidden_states[:, self.prompt_length :, :]
# drop the prompt
if all_attentions is not None:
new_attentions = ()
for attention in all_attentions:
new_attentions += (attention[:, :, self.prompt_length :, self.prompt_length :],)
all_attentions = new_attentions
if all_hidden_states is not None:
new_hidden_states = ()
for hidden_state in all_hidden_states:
new_hidden_states += (hidden_state[:, self.prompt_length :, :],)
all_hidden_states = new_hidden_states
if not return_dict:
return tuple(
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"""
The CPMAnt Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
""",
CPMANT_START_DOCSTRING,
)
class CpmAntForCausalLM(CpmAntPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: CpmAntConfig):
super().__init__(config)
self.cpmant = CpmAntModel(config)
# lm_head.weight is tied to cpmant.input_embedding.weight
self.lm_head = nn.Linear(
config.hidden_size, config.vocab_size + config.prompt_types * config.prompt_length, bias=False
)
self.post_init()
@add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None, # dummy parameter for text-generation pipeline
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
CPMAnt will process attention mask automatically, this parameter is a dummy parameter for
text-generation pipeline.
Example:
Text Generation with CpmAntForCausalLM.
```python
>>> from transformers import CPMAntTokenizer, CpmAntForCausalLM
>>> texts = "今天天气不错,"
>>> model = CpmAntForCausalLM.from_pretrained("openbmb/cpm-ant-10b")
>>> tokenizer = CPMAntTokenizer.from_pretrained("openbmb/cpm-ant-10b")
>>> input_ids = tokenizer(texts, return_tensors="pt")
>>> outputs = model.generate(**input_ids)
>>> output_texts = tokenizer.batch_decode(outputs)
>>> print(output_texts)
['今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的']
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
model_output = self.cpmant(
input_ids, output_attentions, output_hidden_states, past_key_values, use_cache, return_dict
)
hidden_states = model_output.last_hidden_state if return_dict else model_output[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss_func = CrossEntropyLoss()
loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1))
if not return_dict:
output = (logits,) + model_output[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=model_output.past_key_values,
hidden_states=model_output.hidden_states,
attentions=model_output.attentions,
)
def get_input_embeddings(self):
return self.cpmant.input_embedding
def set_input_embeddings(self, embeddings):
self.cpmant.input_embedding = embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, input_ids, **kwargs):
input_ids = input_ids.int()
# save the memory usage of dummy attention mask
if "attention_mask" in kwargs:
kwargs["attention_mask"] = torch.zeros(1, 1)
return {
"input_ids": input_ids,
"use_cache": kwargs["use_cache"],
"past_key_values": kwargs.get("past_key_values", None),
}
def _reorder_cache(self, past_key_values, beam_idx):
past_key_values = [list(each) if each is not None else each for each in past_key_values]
for key_value_layer in past_key_values:
key_value_layer[0] = key_value_layer[0][beam_idx]
key_value_layer[1] = key_value_layer[1][beam_idx]
return past_key_values
|