File size: 9,519 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
import sys
import warnings
from argparse import ArgumentParser
from pathlib import Path
from packaging import version
from .. import AutoFeatureExtractor, AutoImageProcessor, AutoProcessor, AutoTokenizer
from ..utils import logging
from ..utils.import_utils import is_optimum_available
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import get_preprocessor
MIN_OPTIMUM_VERSION = "1.5.0"
ENCODER_DECODER_MODELS = ["vision-encoder-decoder"]
def export_with_optimum(args):
if is_optimum_available():
from optimum.version import __version__ as optimum_version
parsed_optimum_version = version.parse(optimum_version)
if parsed_optimum_version < version.parse(MIN_OPTIMUM_VERSION):
raise RuntimeError(
f"transformers.onnx requires optimum >= {MIN_OPTIMUM_VERSION} but {optimum_version} is installed. You "
"can upgrade optimum by running: pip install -U optimum[exporters]"
)
else:
raise RuntimeError(
"transformers.onnx requires optimum to run, you can install the library by running: pip install "
"optimum[exporters]"
)
cmd_line = [
sys.executable,
"-m",
"optimum.exporters.onnx",
f"--model {args.model}",
f"--task {args.feature}",
f"--framework {args.framework}" if args.framework is not None else "",
f"{args.output}",
]
proc = subprocess.Popen(" ".join(cmd_line), stdout=subprocess.PIPE, shell=True)
proc.wait()
logger.info(
"The export was done by optimum.exporters.onnx. We recommend using to use this package directly in future, as "
"transformers.onnx is deprecated, and will be removed in v5. You can find more information here: "
"https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model."
)
def export_with_transformers(args):
args.output = args.output if args.output.is_file() else args.output.joinpath("model.onnx")
if not args.output.parent.exists():
args.output.parent.mkdir(parents=True)
# Allocate the model
model = FeaturesManager.get_model_from_feature(
args.feature, args.model, framework=args.framework, cache_dir=args.cache_dir
)
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model, feature=args.feature)
onnx_config = model_onnx_config(model.config)
if model_kind in ENCODER_DECODER_MODELS:
encoder_model = model.get_encoder()
decoder_model = model.get_decoder()
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
decoder_onnx_config = onnx_config.get_decoder_config(
encoder_model.config, decoder_model.config, feature=args.feature
)
if args.opset is None:
args.opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
if args.opset < min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset):
raise ValueError(
f"Opset {args.opset} is not sufficient to export {model_kind}. At least "
f" {min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)} is required."
)
preprocessor = AutoFeatureExtractor.from_pretrained(args.model)
onnx_inputs, onnx_outputs = export(
preprocessor,
encoder_model,
encoder_onnx_config,
args.opset,
args.output.parent.joinpath("encoder_model.onnx"),
)
validate_model_outputs(
encoder_onnx_config,
preprocessor,
encoder_model,
args.output.parent.joinpath("encoder_model.onnx"),
onnx_outputs,
args.atol if args.atol else encoder_onnx_config.atol_for_validation,
)
preprocessor = AutoTokenizer.from_pretrained(args.model)
onnx_inputs, onnx_outputs = export(
preprocessor,
decoder_model,
decoder_onnx_config,
args.opset,
args.output.parent.joinpath("decoder_model.onnx"),
)
validate_model_outputs(
decoder_onnx_config,
preprocessor,
decoder_model,
args.output.parent.joinpath("decoder_model.onnx"),
onnx_outputs,
args.atol if args.atol else decoder_onnx_config.atol_for_validation,
)
logger.info(
f"All good, model saved at: {args.output.parent.joinpath('encoder_model.onnx').as_posix()},"
f" {args.output.parent.joinpath('decoder_model.onnx').as_posix()}"
)
else:
# Instantiate the appropriate preprocessor
if args.preprocessor == "auto":
preprocessor = get_preprocessor(args.model)
elif args.preprocessor == "tokenizer":
preprocessor = AutoTokenizer.from_pretrained(args.model)
elif args.preprocessor == "image_processor":
preprocessor = AutoImageProcessor.from_pretrained(args.model)
elif args.preprocessor == "feature_extractor":
preprocessor = AutoFeatureExtractor.from_pretrained(args.model)
elif args.preprocessor == "processor":
preprocessor = AutoProcessor.from_pretrained(args.model)
else:
raise ValueError(f"Unknown preprocessor type '{args.preprocessor}'")
# Ensure the requested opset is sufficient
if args.opset is None:
args.opset = onnx_config.default_onnx_opset
if args.opset < onnx_config.default_onnx_opset:
raise ValueError(
f"Opset {args.opset} is not sufficient to export {model_kind}. "
f"At least {onnx_config.default_onnx_opset} is required."
)
onnx_inputs, onnx_outputs = export(
preprocessor,
model,
onnx_config,
args.opset,
args.output,
)
if args.atol is None:
args.atol = onnx_config.atol_for_validation
validate_model_outputs(onnx_config, preprocessor, model, args.output, onnx_outputs, args.atol)
logger.info(f"All good, model saved at: {args.output.as_posix()}")
warnings.warn(
"The export was done by transformers.onnx which is deprecated and will be removed in v5. We recommend"
" using optimum.exporters.onnx in future. You can find more information here:"
" https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model.",
FutureWarning,
)
def main():
parser = ArgumentParser("Hugging Face Transformers ONNX exporter")
parser.add_argument(
"-m", "--model", type=str, required=True, help="Model ID on huggingface.co or path on disk to load model from."
)
parser.add_argument(
"--feature",
default="default",
help="The type of features to export the model with.",
)
parser.add_argument("--opset", type=int, default=None, help="ONNX opset version to export the model with.")
parser.add_argument(
"--atol", type=float, default=None, help="Absolute difference tolerance when validating the model."
)
parser.add_argument(
"--framework",
type=str,
choices=["pt", "tf"],
default=None,
help=(
"The framework to use for the ONNX export."
" If not provided, will attempt to use the local checkpoint's original framework"
" or what is available in the environment."
),
)
parser.add_argument("output", type=Path, help="Path indicating where to store generated ONNX model.")
parser.add_argument("--cache_dir", type=str, default=None, help="Path indicating where to store cache.")
parser.add_argument(
"--preprocessor",
type=str,
choices=["auto", "tokenizer", "feature_extractor", "image_processor", "processor"],
default="auto",
help="Which type of preprocessor to use. 'auto' tries to automatically detect it.",
)
parser.add_argument(
"--export_with_transformers",
action="store_true",
help=(
"Whether to use transformers.onnx instead of optimum.exporters.onnx to perform the ONNX export. It can be "
"useful when exporting a model supported in transformers but not in optimum, otherwise it is not "
"recommended."
),
)
args = parser.parse_args()
if args.export_with_transformers or not is_optimum_available():
export_with_transformers(args)
else:
export_with_optimum(args)
if __name__ == "__main__":
logger = logging.get_logger("transformers.onnx") # pylint: disable=invalid-name
logger.setLevel(logging.INFO)
main()
|