Spaces:
Running
on
T4
Running
on
T4
File size: 32,049 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 |
# coding=utf-8
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BiT model. Also supports backbone for ViT hybrid."""
import collections
import math
from typing import Optional, Tuple
import numpy as np
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_bit import BitConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "BitConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/bit-50"
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/bit-50"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
BIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/bit-50",
# See all BiT models at https://huggingface.co/models?filter=bit
]
def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]:
r"""
Utility function to get the tuple padding value given the kernel_size and padding.
Args:
padding (Union[`str`, `int`], *optional*):
Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from
PyTorch is used.
kernel_size (`int`, *optional*, defaults to 7):
Kernel size of the convolution layers.
stride (`int`, *optional*, defaults to 1):
Stride value of the convolution layers.
dilation (`int`, *optional*, defaults to 1):
Dilation value of the convolution layers.
"""
dynamic = False
if padding is None:
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding, dynamic
if isinstance(padding, str):
# for any string padding, the padding will be calculated for you, one of three ways
padding = padding.lower()
if padding == "same":
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0:
# static case, no extra overhead
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
else:
# dynamic 'SAME' padding, has runtime/GPU memory overhead
padding = 0
dynamic = True
elif padding == "valid":
# 'VALID' padding, same as padding=0
padding = 0
else:
# Default to PyTorch style 'same'-ish symmetric padding
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding, dynamic
class WeightStandardizedConv2d(nn.Conv2d):
"""Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model.
Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight
Standardization](https://arxiv.org/abs/1903.10520v2)
"""
def __init__(
self,
in_channel,
out_channels,
kernel_size,
stride=1,
padding="SAME",
dilation=1,
groups=1,
bias=False,
eps=1e-6,
):
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation)
super().__init__(
in_channel,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
if is_dynamic:
self.pad = DynamicPad2d(kernel_size, stride, dilation)
else:
self.pad = None
self.eps = eps
def forward(self, hidden_state):
if self.pad is not None:
hidden_state = self.pad(hidden_state)
weight = nn.functional.batch_norm(
self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps
).reshape_as(self.weight)
hidden_state = nn.functional.conv2d(
hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
)
return hidden_state
class BitGroupNormActivation(nn.GroupNorm):
r"""
A module that combines group normalization with an activation function.
"""
def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True):
super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine)
if apply_activation:
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = nn.Identity()
def forward(self, hidden_state):
hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps)
hidden_state = self.activation(hidden_state)
return hidden_state
class DynamicPad2d(nn.Module):
r"""
A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input
hidden states.
"""
def __init__(self, kernel_size, stride, dilation, value=0):
super().__init__()
# Safety checkers
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
if isinstance(stride, int):
stride = (stride, stride)
if isinstance(dilation, int):
dilation = (dilation, dilation)
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.value = value
def compute_padding(x, kernel_size, stride, dilation):
return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0)
self.compute_padding = compute_padding
def __call__(self, input):
# Get width and height
input_height, input_width = input.size()[-2:]
# Compute the padding values
padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0])
padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1])
# apply pad
if padding_height > 0 or padding_width > 0:
input = nn.functional.pad(
input,
[
padding_width // 2,
padding_width - padding_width // 2,
padding_height // 2,
padding_height - padding_height // 2,
],
value=self.value,
)
return input
class BitMaxPool2d(nn.MaxPool2d):
"""Tensorflow like 'SAME' wrapper for 2D max pooling"""
def __init__(
self,
kernel_size: int,
stride=None,
dilation=1,
ceil_mode=False,
padding=(0, 0),
padding_value=0,
use_dynamic_padding=True,
):
kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size)
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation)
super().__init__(kernel_size, stride, padding, dilation, ceil_mode)
if use_dynamic_padding:
self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value)
else:
self.pad = nn.Identity()
def forward(self, hidden_states):
hidden_states = self.pad(hidden_states)
return nn.functional.max_pool2d(
hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode
)
class BitEmbeddings(nn.Module):
"""
BiT Embeddings (stem) composed of a single aggressive convolution.
"""
def __init__(self, config: BitConfig):
super().__init__()
self.convolution = WeightStandardizedConv2d(
config.num_channels,
config.embedding_size,
kernel_size=7,
stride=2,
eps=1e-8,
padding=config.global_padding,
)
self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding)
# Use the same padding strategy as convolutional layers
if config.global_padding is not None and config.global_padding.upper() == "SAME":
self.pad = nn.Identity()
else:
self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0)
if not config.layer_type == "preactivation":
self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size)
else:
self.norm = nn.Identity()
self.num_channels = config.num_channels
def forward(self, pixel_values: Tensor) -> Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embedding = self.convolution(pixel_values)
embedding = self.pad(embedding)
embedding = self.norm(embedding)
embedding = self.pooler(embedding)
return embedding
# Copied from transformers.models.convnext.modeling_convnext.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Bit
class BitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
def make_div(value, divisor=8):
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
if new_value < 0.9 * value:
new_value += divisor
return new_value
class BitPreActivationBottleneckLayer(nn.Module):
"""Pre-activation (v2) bottleneck block.
Follows the implementation of "Identity Mappings in Deep Residual Networks":
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
Except it puts the stride on 3x3 conv when available.
"""
def __init__(
self,
config,
in_channels,
out_channels=None,
bottle_ratio=0.25,
stride=1,
dilation=1,
first_dilation=None,
groups=1,
drop_path_rate=0.0,
is_first_layer=False,
):
super().__init__()
first_dilation = first_dilation or dilation
out_channels = out_channels or in_channels
mid_channels = make_div(out_channels * bottle_ratio)
if is_first_layer:
self.downsample = BitDownsampleConv(
config,
in_channels,
out_channels,
stride=stride,
preact=True,
)
else:
self.downsample = None
self.norm1 = BitGroupNormActivation(config, in_channels)
self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding)
self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels)
self.conv2 = WeightStandardizedConv2d(
mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding
)
self.norm3 = BitGroupNormActivation(config, mid_channels)
self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding)
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
def forward(self, hidden_states):
hidden_states_preact = self.norm1(hidden_states)
# shortcut branch
shortcut = hidden_states
if self.downsample is not None:
shortcut = self.downsample(hidden_states_preact)
# residual branch
hidden_states = self.conv1(hidden_states_preact)
hidden_states = self.conv2(self.norm2(hidden_states))
hidden_states = self.conv3(self.norm3(hidden_states))
hidden_states = self.drop_path(hidden_states)
return hidden_states + shortcut
class BitBottleneckLayer(nn.Module):
"""Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid."""
def __init__(
self,
config,
in_channels,
out_channels=None,
bottle_ratio=0.25,
stride=1,
dilation=1,
first_dilation=None,
groups=1,
drop_path_rate=0.0,
is_first_layer=False,
):
super().__init__()
first_dilation = first_dilation or dilation
out_channels = out_channels or in_channels
mid_chs = make_div(out_channels * bottle_ratio)
if is_first_layer:
self.downsample = BitDownsampleConv(
config,
in_channels,
out_channels,
stride=stride,
preact=False,
)
else:
self.downsample = None
self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding)
self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs)
self.conv2 = WeightStandardizedConv2d(
mid_chs,
mid_chs,
3,
stride=stride,
dilation=first_dilation,
groups=groups,
eps=1e-8,
padding=config.global_padding,
)
self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs)
self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding)
self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
# shortcut branch
shortcut = hidden_states
if self.downsample is not None:
shortcut = self.downsample(hidden_states)
# residual
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = self.conv3(hidden_states)
hidden_states = self.norm3(hidden_states)
hidden_states = self.drop_path(hidden_states)
hidden_states = self.activation(hidden_states + shortcut)
return hidden_states
class BitDownsampleConv(nn.Module):
def __init__(
self,
config,
in_channels,
out_channels,
stride=1,
preact=True,
):
super().__init__()
self.conv = WeightStandardizedConv2d(
in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding
)
self.norm = (
nn.Identity()
if preact
else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
)
def forward(self, x):
return self.norm(self.conv(x))
class BitStage(nn.Module):
"""
A ResNet v2 stage composed by stacked layers.
"""
def __init__(
self,
config,
in_channels,
out_channels,
stride,
dilation,
depth,
bottle_ratio=0.25,
layer_dropout=None,
):
super().__init__()
first_dilation = 1 if dilation in (1, 2) else 2
# Get the layer type
if config.layer_type == "bottleneck":
layer_cls = BitBottleneckLayer
else:
layer_cls = BitPreActivationBottleneckLayer
prev_chs = in_channels
self.layers = nn.Sequential()
for layer_idx in range(depth):
# Get the current hyper-parameters
stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters(
layer_idx, stride, layer_dropout
)
self.layers.add_module(
str(layer_idx),
layer_cls(
config,
prev_chs,
out_channels,
stride=stride,
dilation=dilation,
bottle_ratio=bottle_ratio,
first_dilation=first_dilation,
drop_path_rate=drop_path_rate,
is_first_layer=is_first_layer,
),
)
prev_chs = out_channels
first_dilation = dilation
def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout):
r"""
Get the new hyper-parameters with respect to the previous ones and the index of the current layer.
"""
if layer_dropout:
drop_path_rate = layer_dropout[layer_idx]
else:
drop_path_rate = 0.0
if layer_idx != 0:
stride = 1
is_first_layer = layer_idx == 0
return stride, drop_path_rate, is_first_layer
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for _, layer in enumerate(self.layers):
hidden_state = layer(hidden_state)
return hidden_state
class BitEncoder(nn.Module):
def __init__(self, config: BitConfig):
super().__init__()
self.stages = nn.ModuleList([])
prev_chs = config.embedding_size
# These needs to stay hardcoded
current_stride = 4
dilation = 1
layer_dropouts = [
x.tolist()
for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths)
]
for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate(
zip(config.depths, config.hidden_sizes, layer_dropouts)
):
# Get the updated hyper params
out_channels, stride, dilation = self._get_updated_hyperparameters(
stage_idx, current_stride, current_hidden_size, dilation, config
)
stage = BitStage(
config,
prev_chs,
out_channels,
stride=stride,
dilation=dilation,
depth=current_depth,
layer_dropout=layer_dropout,
)
prev_chs = out_channels
current_stride *= stride
self.stages.add_module(str(stage_idx), stage)
def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config):
out_channels = make_div(current_hidden_size * config.width_factor)
stride = 1 if stage_idx == 0 else 2
if current_stride >= config.output_stride:
dilation *= stride
stride = 1
return out_channels, stride, dilation
def forward(
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> BaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
)
class BitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BitConfig
base_model_prefix = "bit"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BitModel):
module.gradient_checkpointing = value
BIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`BitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare BiT model outputting raw features without any specific head on top.",
BIT_START_DOCSTRING,
)
class BitModel(BitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embedder = BitEmbeddings(config)
self.encoder = BitEncoder(config)
self.norm = (
BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1])
if config.layer_type == "preactivation"
else nn.Identity()
)
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values)
encoder_outputs = self.encoder(
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.norm(last_hidden_state)
pooled_output = self.pooler(last_hidden_state)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
BIT_START_DOCSTRING,
)
class BitForImageClassification(BitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bit = BitModel(config)
# classification head
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> ImageClassifierOutputWithNoAttention:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
BiT backbone, to be used with frameworks like DETR and MaskFormer.
""",
BIT_START_DOCSTRING,
)
class BitBackbone(BitPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.bit = BitModel(config)
self.num_features = [config.embedding_size] + config.hidden_sizes
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("google/resnetnv2-50")
>>> model = AutoBackbone.from_pretrained("google/resnetnv2-50")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True)
hidden_states = outputs.hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
|