File size: 177,317 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import warnings
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from tensorflow.compiler.tf2xla.python.xla import dynamic_update_slice
from ..modeling_tf_outputs import TFCausalLMOutputWithPast, TFSeq2SeqLMOutput
from ..models.auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
)
from ..tf_utils import shape_list, stable_softmax
from ..utils import ModelOutput, logging
from .configuration_utils import GenerationConfig
from .tf_logits_process import (
TFForcedBOSTokenLogitsProcessor,
TFForcedEOSTokenLogitsProcessor,
TFForceTokensLogitsProcessor,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
TFNoBadWordsLogitsProcessor,
TFNoRepeatNGramLogitsProcessor,
TFRepetitionPenaltyLogitsProcessor,
TFSuppressTokensAtBeginLogitsProcessor,
TFSuppressTokensLogitsProcessor,
TFTemperatureLogitsWarper,
TFTopKLogitsWarper,
TFTopPLogitsWarper,
)
logger = logging.get_logger(__name__)
@dataclass
class TFGreedySearchDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
scores: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFGreedySearchEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention
weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
scores: Optional[Tuple[tf.Tensor]] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFSampleDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using sampling.
Args:
sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(num_return_sequences*batch_size, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
scores: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFSampleEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of
the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size*num_return_sequences,
num_heads, sequence_length, sequence_length)`.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size*num_return_sequences, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_return_sequences, num_heads, generated_length, sequence_length)`.
cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_return_sequences, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
scores: Optional[Tuple[tf.Tensor]] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFBeamSearchDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using beam search.
Args:
sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `tf.Tensor` of shape
`(batch_size*num_return_sequences, sequence_length)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
sequences_scores: Optional[tf.Tensor] = None
scores: Optional[Tuple[tf.Tensor]] = None
beam_indices: Optional[tf.Tensor] = None
attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFBeamSearchEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights
of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
beam. `Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `tf.Tensor` of shape
`(batch_size*num_return_sequences, sequence_length)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
sequence_length)`.
cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
sequences_scores: Optional[tf.Tensor] = None
scores: Optional[Tuple[tf.Tensor]] = None
beam_indices: Optional[tf.Tensor] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFBeamSampleDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using beam sample.
Args:
sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `tf.Tensor` of shape
`(batch_size*num_return_sequences, sequence_length)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
sequences_scores: Optional[tf.Tensor] = None
scores: Optional[Tuple[tf.Tensor]] = None
beam_indices: Optional[tf.Tensor] = None
attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFBeamSampleEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention
weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`tf.Tensor` of shape `(batch_size*num_beams, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `tf.Tensor` of shape
`(batch_size*num_return_sequences, sequence_length)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size*num_beams, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
sequences_scores: Optional[tf.Tensor] = None
scores: Optional[Tuple[tf.Tensor]] = None
beam_indices: Optional[tf.Tensor] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFContrastiveSearchDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using contrastive search.
Args:
sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
scores: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
@dataclass
class TFContrastiveSearchEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using contrastive search. Hidden states and attention
weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
"""
sequences: tf.Tensor = None
scores: Optional[Tuple[tf.Tensor]] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None
TFGreedySearchOutput = Union[TFGreedySearchEncoderDecoderOutput, TFGreedySearchDecoderOnlyOutput]
TFSampleOutput = Union[TFSampleEncoderDecoderOutput, TFSampleDecoderOnlyOutput]
TFBeamSearchOutput = Union[TFBeamSearchEncoderDecoderOutput, TFBeamSearchDecoderOnlyOutput]
TFBeamSampleOutput = Union[TFBeamSampleEncoderDecoderOutput, TFBeamSampleDecoderOnlyOutput]
TFContrastiveSearchOutput = Union[TFContrastiveSearchEncoderDecoderOutput, TFContrastiveSearchDecoderOnlyOutput]
TFGenerateOutput = Union[
TFGreedySearchOutput, TFSampleOutput, TFBeamSearchOutput, TFBeamSampleOutput, TFContrastiveSearchOutput
]
class TFGenerationMixin:
"""
A class containing all of the functions supporting generation, to be used as a mixin in [`TFPreTrainedModel`].
The class exposes [`~generation.TFGenerationMixin.generate`], which can be used for:
- *greedy decoding* by calling [`~generation.TFGenerationMixin.greedy_search`] if `num_beams=1` and
`do_sample=False`
- *contrastive search* by calling [`~generation.TFGenerationMixin.contrastive_search`] if `penalty_alpha>0` and
`top_k>1`
- *multinomial sampling* by calling [`~generation.TFGenerationMixin.sample`] if `num_beams=1` and
`do_sample=True`
- *beam-search decoding* by calling [`~generation.TFGenerationMixin.beam_search`] if `num_beams>1`
You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
"""
_seed_generator = None
@property
def seed_generator(self):
warnings.warn("`seed_generator` is deprecated and will be removed in a future version.", UserWarning)
if self._seed_generator is None:
self._seed_generator = tf.random.Generator.from_non_deterministic_state()
return self._seed_generator
supports_xla_generation = True
def prepare_inputs_for_generation(self, *args, **kwargs):
raise NotImplementedError(
"A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`."
)
def compute_transition_scores(
self,
sequences: tf.Tensor,
scores: Tuple[tf.Tensor],
beam_indices: Optional[tf.Tensor] = None,
normalize_logits: bool = False,
) -> tf.Tensor:
"""
Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.
Parameters:
sequences (`tf.Tensor`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
shorter if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)`):
Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of
`tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each
tensor of shape `(batch_size*num_beams, config.vocab_size)`.
beam_indices (`tf.Tensor`, *optional*):
Beam indices of generated token id at each generation step. `tf.Tensor` of shape
`(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
generate-time.
normalize_logits (`bool`, *optional*, defaults to `False`):
Whether to normalize the logits (which, for legacy reasons, may be unnormalized).
Return:
`tf.Tensor`: A `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
the transition scores (logits)
Examples:
```python
>>> from transformers import GPT2Tokenizer, TFAutoModelForCausalLM
>>> import numpy as np
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
>>> model = TFAutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer.pad_token_id = tokenizer.eos_token_id
>>> inputs = tokenizer(["Today is"], return_tensors="tf")
>>> # Example 1: Print the scores for each token generated with Greedy Search
>>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, normalize_logits=True
... )
>>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
>>> # encoder-decoder models, like BART or T5.
>>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
>>> generated_tokens = outputs.sequences[:, input_length:]
>>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
... # | token | token string | logits | probability
... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
| 262 | the | -1.413 | 24.33%
| 1110 | day | -2.609 | 7.36%
| 618 | when | -2.009 | 13.41%
| 356 | we | -1.859 | 15.58%
| 460 | can | -2.508 | 8.14%
>>> # Example 2: Reconstruct the sequence scores from Beam Search
>>> outputs = model.generate(
... **inputs,
... max_new_tokens=5,
... num_beams=4,
... num_return_sequences=4,
... return_dict_in_generate=True,
... output_scores=True,
... )
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
... )
>>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
>>> # Tip: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
>>> # use case, you might want to recompute it with `normalize_logits=True`.
>>> output_length = input_length + np.sum(transition_scores.numpy() < 0, axis=1)
>>> length_penalty = model.generation_config.length_penalty
>>> reconstructed_scores = np.sum(transition_scores, axis=1) / (output_length**length_penalty)
>>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
True
```"""
# 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
# to a beam search approach were the first (and only) beam is always selected
if beam_indices is None:
beam_indices = tf.tile(tf.expand_dims(tf.range(scores[0].shape[0]), axis=1), [1, len(scores)])
# 2. reshape scores as [batch_size, vocab_size, # generation steps] with # generation steps being
# seq_len - input_length
scores = tf.transpose(tf.reshape(tf.stack(scores), (len(scores), -1)), (1, 0))
scores = tf.reshape(scores, (-1, self.config.vocab_size, scores.shape[-1]))
# 3. Optionally normalize the logits (across the vocab dimension)
if normalize_logits:
scores = tf.nn.log_softmax(scores, axis=1)
# 4. cut beam_indices to longest beam length
beam_indices_mask = beam_indices < 0
max_beam_length = tf.math.reduce_max(
tf.math.reduce_sum((1 - tf.cast(beam_indices_mask, dtype=tf.int32)), axis=-1)
)
beam_indices = beam_indices[:, -max_beam_length:]
beam_indices_mask = beam_indices_mask[:, -max_beam_length:]
# 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
beam_indices = tf.where(beam_indices_mask, 0, beam_indices)
# 6. Define which indices contributed to scores
cut_idx = sequences.shape[-1] - max_beam_length
token_indices = sequences[:, cut_idx:]
gen_step_idx = tf.broadcast_to(tf.range(scores.shape[-1]), token_indices.shape)
indices = tf.stack([beam_indices, token_indices, gen_step_idx], axis=-1)
# 7. Compute scores
transition_scores = tf.gather_nd(scores, indices)
# 8. Mask out transition_scores of beams that stopped early
transition_scores = tf.where(beam_indices_mask, 0, transition_scores)
return transition_scores
def _validate_model_class(self):
"""
Confirms that the model class is compatible with generation. If not, raises an exception that points to the
right class to use.
"""
if not self.can_generate():
generate_compatible_mappings = [
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
]
generate_compatible_classes = set()
for model_mapping in generate_compatible_mappings:
supported_models = model_mapping.get(type(self.config), default=None)
if supported_models is not None:
generate_compatible_classes.add(supported_models.__name__)
exception_message = (
f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
"it doesn't have a language model head."
)
if generate_compatible_classes:
exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
raise TypeError(exception_message)
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
"""Validates model kwargs for generation. Generate argument typos will also be caught here."""
# Excludes arguments that are handled before calling any model function
if self.config.is_encoder_decoder:
for key in ["decoder_input_ids"]:
model_kwargs.pop(key, None)
unused_model_args = []
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
# `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
# `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
if "kwargs" in model_args or "model_kwargs" in model_args:
model_args |= set(inspect.signature(self.call).parameters)
for key, value in model_kwargs.items():
if value is not None and key not in model_args:
unused_model_args.append(key)
if unused_model_args:
raise ValueError(
f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
" generate arguments will also show up in this list)"
)
def generate(
self,
inputs: Optional[tf.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[TFLogitsProcessorList] = None,
seed=None,
**kwargs,
) -> Union[TFGenerateOutput, tf.Tensor]:
r"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](../generation_strategies).
</Tip>
Parameters:
inputs (`tf.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
seed (`List[int]`, *optional*):
Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the
`seed` argument from stateless functions in `tf.random`.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when
`config.return_dict_in_generate=True`) or a `tf.Tensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.TFGreedySearchDecoderOnlyOutput`],
- [`~generation.TFSampleDecoderOnlyOutput`],
- [`~generation.TFBeamSearchDecoderOnlyOutput`],
- [`~generation.TFBeamSampleDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.TFGreedySearchEncoderDecoderOutput`],
- [`~generation.TFSampleEncoderDecoderOutput`],
- [`~generation.TFBeamSearchEncoderDecoderOutput`],
- [`~generation.TFBeamSampleEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
if generation_config is None:
# legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
# two conditions must be met
# 1) the generation config must have been created from the model config (`_from_model_config` field);
# 2) the generation config must have seen no modification since its creation (the hash is the same).
if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
self.generation_config
):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
" deprecated strategy to control generation and will be removed soon, in a future version."
" Please use and modify the model generation configuration (see"
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
)
self.generation_config = new_generation_config
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Cast input dtypes to tf.int32 unless they're floats (which happens for some image models)
if inputs is not None:
if isinstance(inputs, tf.Tensor) and inputs.dtype.is_floating:
pass
elif isinstance(inputs, np.ndarray) and np.issubdtype(inputs.dtype, np.floating):
pass
else:
inputs = tf.cast(inputs, tf.int32)
if model_kwargs.get("attention_mask") is not None:
model_kwargs["attention_mask"] = tf.cast(model_kwargs["attention_mask"], tf.int32)
if "decoder_input_ids" in model_kwargs:
if (
isinstance(model_kwargs["decoder_input_ids"], tf.Tensor)
and model_kwargs["decoder_input_ids"].dtype.is_floating
):
pass
elif isinstance(model_kwargs["decoder_input_ids"], np.ndarray) and np.issubdtype(
model_kwargs["decoder_input_ids"].dtype, np.floating
):
pass
else:
model_kwargs["decoder_input_ids"] = tf.cast(model_kwargs["decoder_input_ids"], tf.int32)
# 3. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask") is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
use_xla = not tf.executing_eagerly()
if use_xla and not self.supports_xla_generation:
raise ValueError(
"The selected model does not support Graph mode nor XLA generation (e.g. from tf.function())"
)
# 4. Define model inputs
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
# inputs_ids now has to be defined and cannot be None anymore
batch_size = shape_list(inputs_tensor)[0]
# 5. Prepare other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.call).parameters.keys())
requires_attention_mask = "encoder_outputs" not in model_kwargs
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
)
# decoder-only models should use left-padding for generation
if not self.config.is_encoder_decoder:
if generation_config.pad_token_id is not None and tf.math.reduce_any(
inputs_tensor[:, -1] == generation_config.pad_token_id
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
# if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name
)
# 6. Prepare model inputs which will be used for auto-regressive generation
if self.config.is_encoder_decoder:
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
)
else:
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
# 7. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = shape_list(input_ids)[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
# 20 is the default max_length of the generation config
warnings.warn(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
"to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length and generation_config.max_length is not None:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
# If the input length is a tensor (i.e. dynamic length), skip length checks
if not isinstance(input_ids_seq_length, tf.Tensor):
if (
generation_config.min_length is not None
and generation_config.min_length > generation_config.max_length
):
raise ValueError(
f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger"
f" than the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing`max_new_tokens`."
)
# 8. determine generation mode
is_contrastive_search_gen_mode = (
generation_config.top_k is not None
and generation_config.top_k > 1
and generation_config.do_sample is False
and generation_config.penalty_alpha is not None
and generation_config.penalty_alpha > 0
)
is_greedy_gen_mode = (
not is_contrastive_search_gen_mode
and (generation_config.num_beams == 1)
and generation_config.do_sample is False
)
is_beam_gen_mode = (
not is_contrastive_search_gen_mode
and (generation_config.num_beams > 1)
and generation_config.do_sample is False
)
is_sample_gen_mode = (generation_config.num_beams == 1) and generation_config.do_sample is True
is_beam_sample_gen_mode = (generation_config.num_beams > 1) and generation_config.do_sample is True
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
logits_processor=logits_processor,
)
# 10. go into different generation modes
if is_greedy_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
" greedy search."
)
# 11. run greedy search
return self.greedy_search(
input_ids,
max_length=generation_config.max_length,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
logits_processor=logits_processor,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
**model_kwargs,
)
elif is_contrastive_search_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
" contrastive search."
)
# 11. run contrastive search
return self.contrastive_search(
input_ids,
top_k=generation_config.top_k,
penalty_alpha=generation_config.penalty_alpha,
logits_processor=logits_processor,
max_length=generation_config.max_length,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
**model_kwargs,
)
elif is_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config=generation_config)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run sample
return self.sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
max_length=generation_config.max_length,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
seed=seed,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
**model_kwargs,
)
elif is_beam_gen_mode:
if generation_config.num_beams < generation_config.num_return_sequences:
raise ValueError(
"Beam search decoding cannot return more sequences than it has beams. Please set num_beams >="
f" num_return_sequences, got {generation_config.num_beams} and"
f" {generation_config.num_return_sequences} (respectivelly)"
)
# 11. broadcast inputs to the desired number of beams
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
expand_in_new_axis=True,
**model_kwargs,
)
# 12. run beam search
return self.beam_search(
input_ids,
max_length=generation_config.max_length,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
length_penalty=generation_config.length_penalty,
early_stopping=generation_config.early_stopping,
logits_processor=logits_processor,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
num_return_sequences=generation_config.num_return_sequences,
**model_kwargs,
)
elif is_beam_sample_gen_mode:
if generation_config.num_beams < generation_config.num_return_sequences:
raise ValueError(
"Beam search decoding cannot return more sequences than it has beams. Please set num_beams >="
f" num_return_sequences, got {generation_config.num_beams} and"
f" {generation_config.num_return_sequences} (respectivelly)"
)
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config=generation_config)
# 12. broadcast inputs to the desired number of beams
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
expand_in_new_axis=True,
**model_kwargs,
)
# 13. run beam sample (beam search with sampling)
return self.beam_search(
input_ids,
do_sample=True,
max_length=generation_config.max_length,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
length_penalty=generation_config.length_penalty,
early_stopping=generation_config.early_stopping,
logits_processor=logits_processor,
logits_warper=logits_warper,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
num_return_sequences=generation_config.num_return_sequences,
**model_kwargs,
)
def _prepare_attention_mask_for_generation(
self,
inputs: tf.Tensor,
pad_token_id: Optional[int],
eos_token_id: Optional[int],
) -> tf.Tensor:
is_input_ids = len(inputs.shape) == 2 and inputs.dtype in (tf.int32, tf.int64)
is_pad_token_in_inputs = (pad_token_id is not None) and tf.math.reduce_any(inputs == pad_token_id)
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id != eos_token_id)
# Check if input is input_ids and padded -> only then is attention_mask defined
if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
return tf.cast(tf.math.not_equal(inputs, pad_token_id), dtype=tf.int32)
else:
return tf.ones(inputs.shape[:2], dtype=tf.int32)
def _prepare_encoder_decoder_kwargs_for_generation(
self, inputs_tensor: tf.Tensor, model_kwargs, model_input_name: Optional[str] = None
) -> Dict[str, Any]:
# 1. get encoder and store encoder outputs
encoder = self.get_encoder()
# 2. prepare encoder args and encoder kwargs from model kwargs
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.call).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
# 3. vision models don't use `attention_mask`.
encoder_kwargs["return_dict"] = True
encoder_kwargs[model_input_name] = inputs_tensor
if model_input_name != self.main_input_name: # in Keras, the first input must always be passed
encoder_kwargs[self.main_input_name] = None
encoder_outputs = encoder(**encoder_kwargs)
model_kwargs["encoder_outputs"] = encoder_outputs
return model_kwargs
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
model_input_name: str,
model_kwargs: Dict[str, tf.Tensor],
decoder_start_token_id: int = None,
bos_token_id: int = None,
) -> Tuple[tf.Tensor, Dict[str, tf.Tensor]]:
"""Prepares `decoder_input_ids` for generation with encoder-decoder models"""
# 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
# we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
elif "input_ids" in model_kwargs and model_input_name != "input_ids":
decoder_input_ids = model_kwargs.pop("input_ids")
else:
decoder_input_ids = None
# 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
decoder_input_ids_start = tf.ones((batch_size, 1), dtype=tf.int32) * decoder_start_token_id
# no user input -> use decoder_start_token_id as decoder_input_ids
if decoder_input_ids is None:
decoder_input_ids = decoder_input_ids_start
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
# decoder_attention_mask if provided)
elif tf.reduce_all(decoder_input_ids[:, 0] != decoder_start_token_id):
decoder_input_ids = tf.concat([decoder_input_ids_start, decoder_input_ids], axis=-1)
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
decoder_attention_mask = tf.concat(
(tf.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
axis=-1,
)
model_kwargs["decoder_attention_mask"] = decoder_attention_mask
return decoder_input_ids, model_kwargs
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
# retrieve decoder_start_token_id for encoder-decoder models
# fall back to bos_token_id if necessary
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@staticmethod
def _expand_inputs_for_generation(
expand_size: int = 1,
is_encoder_decoder: bool = False,
input_ids: Optional[tf.Tensor] = None,
expand_in_new_axis: bool = False,
**model_kwargs,
) -> Tuple[tf.Tensor, Dict[str, Any]]:
"""
Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...] or [batch_size, expand_size, ...],
depending on `expand_in_new_axis`. Beam-based approaches expect this function to be used with
`expand_in_new_axis=True`
"""
def _expand_tensor(tensor: tf.Tensor):
if expand_in_new_axis:
shape = shape_list(tensor)
return tf.broadcast_to(tensor[:, None], (shape[0], expand_size) + tuple(shape[1:]))
else:
return tf.repeat(tensor, expand_size, axis=0)
def _expand_dict_for_generation(dict_to_expand):
for key in dict_to_expand:
if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], tf.Tensor):
dict_to_expand[key] = _expand_tensor(dict_to_expand[key])
return dict_to_expand
if input_ids is not None:
input_ids = _expand_tensor(input_ids)
model_kwargs = _expand_dict_for_generation(model_kwargs)
if is_encoder_decoder:
if model_kwargs.get("encoder_outputs") is None:
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
return input_ids, model_kwargs
def _prepare_model_inputs(
self,
inputs: Optional[tf.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, tf.Tensor]] = None,
) -> Tuple[tf.Tensor, Optional[str], Dict[str, tf.Tensor]]:
"""
This function extracts the model-specific `inputs` for generation.
"""
# 1. retrieve all kwargs that are non-None or non-model input related.
# some encoder-decoder models have different names for model and encoder
if (
self.config.is_encoder_decoder
and hasattr(self, "encoder")
and hasattr(self.encoder, "main_input_name")
and self.encoder.main_input_name != self.main_input_name
):
input_name = self.encoder.main_input_name
else:
input_name = self.main_input_name
model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}
# 2. check whether model_input_name is passed as kwarg
# if yes and `inputs` is None use kwarg inputs
inputs_kwarg = model_kwargs.pop(input_name, None)
if inputs_kwarg is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed."
f"Make sure to either pass {inputs} or {input_name}=..."
)
elif inputs_kwarg is not None:
inputs = inputs_kwarg
# 3. In the presence of `inputs_embeds` for text models:
# - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
# doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
# input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
# - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
# pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
if not self.config.is_encoder_decoder:
has_inputs_embeds_forwarding = "inputs_embeds" in set(
inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
)
if not has_inputs_embeds_forwarding:
raise ValueError(
f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
"doesn't have its forwarding implemented. See the GPT2 implementation for an example "
"(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
)
# In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
# the attention mask) can rely on the actual model input.
model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
inputs, bos_token_id, model_kwargs=model_kwargs
)
else:
if inputs is not None:
raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
# 4. if `inputs` is still None, try to create `input_ids` from BOS token
inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
return inputs, input_name, model_kwargs
def _maybe_initialize_input_ids_for_generation(
self,
inputs: Optional[tf.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, tf.Tensor]] = None,
) -> tf.Tensor:
"""Initializes input ids for generation, if necessary."""
if inputs is not None:
return inputs
encoder_outputs = model_kwargs.get("encoder_outputs")
if self.config.is_encoder_decoder and encoder_outputs is not None:
# make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
shape = encoder_outputs.last_hidden_state.shape[:-1]
return tf.ones(shape, dtype=tf.int32) * -100
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
# soft-prompting or in multimodal implementations built on top of decoder-only language models.
batch_size = 1
for value in model_kwargs.values():
if isinstance(value, tf.Tensor):
batch_size = value.shape[0]
break
return tf.ones((batch_size, 1), dtype=tf.int32) * bos_token_id
@staticmethod
def _extract_past_from_model_output(outputs: ModelOutput):
past_key_values = None
if "past_key_values" in outputs:
past_key_values = outputs.past_key_values
elif "mems" in outputs:
past_key_values = outputs.mems
elif "past_buckets_states" in outputs:
past_key_values = outputs.past_buckets_states
return past_key_values
def _update_model_kwargs_for_generation(
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False
) -> Dict[str, Any]:
# update past_key_values
model_kwargs["past_key_values"] = self._extract_past_from_model_output(outputs)
# update attention mask
if not is_encoder_decoder:
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = tf.concat(
[attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1
)
return model_kwargs
def _update_model_kwargs_for_xla_generation(
self,
model_outputs: ModelOutput,
model_kwargs: Dict[str, Any],
cur_len: int,
max_length: int,
batch_size: int,
is_encoder_decoder: bool = False,
batch_axis: int = 0,
):
def _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder):
"""initializes the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`"""
if is_encoder_decoder:
# One 1 for decoder_start_token_id, 0s for the currently-unfilled locations in the past_key_values tensor,
# 1s for the actual input_ids
decoder_attention_mask = tf.concat(
[
tf.ones((batch_size, 1), dtype=tf.int32),
tf.zeros((batch_size, num_padding_values), dtype=tf.int32),
tf.ones((batch_size, 1), dtype=tf.int32),
],
axis=1,
)
mask = {"decoder_attention_mask": decoder_attention_mask}
else:
attention_mask = model_kwargs.pop("attention_mask")
# 0s for the currently-unfilled locations in the past_key_values tensor, 1s for the actual input_ids
attention_mask = tf.concat(
[
attention_mask,
tf.zeros((batch_size, num_padding_values), dtype=attention_mask.dtype),
tf.ones((batch_size, 1), dtype=attention_mask.dtype),
],
axis=1,
)
mask = {"attention_mask": attention_mask}
return mask
def _update_attention(model_kwargs, new_past_index, is_encoder_decoder):
"""updates the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`"""
update_start = tf.constant([0, 1], dtype=tf.int32) * new_past_index
if is_encoder_decoder:
decoder_attention_mask = model_kwargs.pop("decoder_attention_mask")
decoder_attention_mask_update_slice = tf.ones((batch_size, 1), dtype=decoder_attention_mask.dtype)
decoder_attention_mask = dynamic_update_slice(
decoder_attention_mask, decoder_attention_mask_update_slice, update_start
)
mask = {"decoder_attention_mask": decoder_attention_mask}
else:
attention_mask = model_kwargs.pop("attention_mask")
attention_mask_update_slice = tf.ones((batch_size, 1), dtype=attention_mask.dtype)
attention_mask = dynamic_update_slice(attention_mask, attention_mask_update_slice, update_start)
mask = {"attention_mask": attention_mask}
return mask
def _initialize_past(past_key_values, num_padding_values, batch_axis):
"""initialize past_key_values with zeros -- the structure depends on `batch_axis`"""
if batch_axis == 0:
padding_values = tf.constant([[0, 0], [0, 0], [0, num_padding_values], [0, 0]], dtype=tf.int32)
new_past = ()
for past_layer in past_key_values:
new_past_layer = list(past_layer)
for i in range(len(new_past_layer[:2])):
new_past_layer[i] = tf.pad(past_layer[i], padding_values)
new_past += (tuple(new_past_layer),)
else:
padding_values = tf.scatter_nd(indices=[[3, 1]], updates=[num_padding_values], shape=(5, 2))
new_past = list(past_key_values)
for i in range(len(past_key_values)):
new_past[i] = tf.pad(past_key_values[i], padding_values)
return new_past
def _update_past(past_key_values, new_past_index, batch_axis):
if batch_axis == 0:
slice_start_base = tf.constant([0, 0, 1, 0])
new_past = ()
for past_layer in past_key_values:
new_past_layer = list(past_layer)
for i in range(len(new_past_layer[:2])):
update_slice = past_layer[i][:, :, -1:]
# Write the last slice to the first open location in the padded past_key_values array
# and then truncate the last slice off the array
new_past_layer[i] = dynamic_update_slice(
past_layer[i][:, :, :-1], update_slice, slice_start_base * new_past_index
)
new_past += (tuple(new_past_layer),)
else:
slice_start_base = tf.constant([0, 0, 0, 1, 0])
new_past = [None for _ in range(len(past_key_values))]
for i in range(len(past_key_values)):
update_slice = past_key_values[i][:, :, :, -1:]
# Write the last slice to the first open location in the padded past_key_values array
# and then truncate the last slice off the array
new_past[i] = dynamic_update_slice(
past_key_values[i][:, :, :, :-1], update_slice, slice_start_base * new_past_index
)
return new_past
past_key_values = self._extract_past_from_model_output(model_outputs)
if past_key_values is None:
raise ValueError(
"No known `past_key_values variable` found in model outputs (model outputs keys:"
f" {list(model_outputs.keys())})"
)
is_past_initialized = model_kwargs.pop("past_key_values", None) is not None
if not is_past_initialized:
# The padded version of `past_key_values` has a length of `max_length - 1`, as `past_key_values` holds information relative to
# previous autoregressive generation steps (step 0 has no past_key_values, step 1 has 1 past_key_values value, ..., the last step
# has `max_length - 1` past_key_values values).
num_padding_values = max_length - cur_len - 1
mask = _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder)
new_past = _initialize_past(past_key_values, num_padding_values, batch_axis)
else:
# The new index of past_key_values to be filled corresponds to the current length of the sequence, with two
# subtractions: -1 because past_key_values holds information regarding previous generation steps (read comment above)
# and -1 again because in an array the index is the length of the array minus 1.
new_past_index = cur_len - 2
mask = _update_attention(model_kwargs, new_past_index, is_encoder_decoder)
new_past = _update_past(past_key_values, new_past_index, batch_axis)
# sets the updated variables (mask and past_key_values)
model_kwargs.update(mask)
model_kwargs["past_key_values"] = tuple(new_past)
return model_kwargs
def _get_logits_warper(
self,
generation_config: GenerationConfig,
) -> TFLogitsProcessorList:
"""
This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsWarper`]
instances used for multinomial sampling.
"""
# instantiate warpers list
warpers = TFLogitsProcessorList()
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if generation_config.temperature is not None and generation_config.temperature != 1.0:
warpers.append(TFTemperatureLogitsWarper(generation_config.temperature))
if generation_config.top_k is not None and generation_config.top_k != 0:
warpers.append(TFTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1))
if generation_config.top_p is not None and generation_config.top_p < 1.0:
warpers.append(TFTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1))
return warpers
def _get_logits_processor(
self,
generation_config: GenerationConfig,
input_ids_seq_length: int,
logits_processor: Optional[TFLogitsProcessorList],
) -> TFLogitsProcessorList:
"""
This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsProcessor`]
instances used to modify the scores of the language model head.
"""
processors = TFLogitsProcessorList()
# instantiate processors list
if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
processors.append(TFRepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
processors.append(TFNoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
if generation_config.bad_words_ids is not None:
processors.append(
TFNoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id)
)
if (
generation_config.min_length is not None
and generation_config.eos_token_id is not None
and generation_config.min_length > 0
):
processors.append(TFMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id))
if generation_config.forced_bos_token_id is not None:
processors.append(TFForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
if generation_config.forced_eos_token_id is not None:
processors.append(
TFForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
)
if generation_config.suppress_tokens is not None:
processors.append(TFSuppressTokensLogitsProcessor(generation_config.suppress_tokens))
if generation_config.begin_suppress_tokens is not None:
begin_index = input_ids_seq_length
begin_index = (
begin_index
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
else begin_index + 1
)
if generation_config.forced_decoder_ids is not None:
begin_index += generation_config.forced_decoder_ids[-1][
0
] # generation starts after the last token that is forced
processors.append(
TFSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
)
if generation_config.forced_decoder_ids is not None:
processors.append(TFForceTokensLogitsProcessor(generation_config.forced_decoder_ids))
processors = self._merge_criteria_processor_list(processors, logits_processor)
return processors
def _merge_criteria_processor_list(
self,
default_list: TFLogitsProcessorList,
custom_list: TFLogitsProcessorList,
) -> TFLogitsProcessorList:
if len(custom_list) == 0:
return default_list
for default in default_list:
for custom in custom_list:
if type(custom) is type(default):
object_type = "logits processor"
raise ValueError(
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
f" `generate`, but it has already been created with the values {default}. {default} has been"
" created by passing the corresponding arguments to generate or by the model's config default"
f" values. If you just want to change the default values of {object_type} consider passing"
f" them as arguments to `generate` instead of using a custom {object_type}."
)
default_list.extend(custom_list)
return default_list
def greedy_search(
self,
input_ids: tf.Tensor,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
logits_processor: Optional[TFLogitsProcessorList] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
**model_kwargs,
) -> Union[TFGreedySearchOutput, tf.Tensor]:
r"""
Generates sequences for models with a language modeling head using greedy decoding.
Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`TFLogitsProcessorList`, *optional*):
An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
max_length (`int`, *optional*, defaults to 20):
The maximum length of the sequence to be generated.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
model_kwargs:
Additional model specific keyword arguments will be forwarded to the `call` function of the model. If
model is an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.TFGreedySearchDecoderOnlyOutput`], [`~generation.TFGreedySearchEncoderDecoderOutput`] or
`tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a
[`~generation.TFGreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.TFGreedySearchEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
Examples:
```python
>>> from transformers import (
... AutoTokenizer,
... TFAutoModelForCausalLM,
... TFLogitsProcessorList,
... TFMinLengthLogitsProcessor,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = TFAutoModelForCausalLM.from_pretrained("gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
>>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids
>>> # instantiate logits processors
>>> logits_processor = TFLogitsProcessorList(
... [
... TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
... ]
... )
>>> outputs = model.greedy_search(input_ids, logits_processor=logits_processor)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["Today is a beautiful day, and I'm so happy to be here. I'm so happy to"]
```"""
# 1. init greedy_search values
logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache)
use_xla = not tf.executing_eagerly()
# TODO (Joao): fix cache format or find programatic way to detect cache index
# GPT2 and other models has a slightly different cache structure, with a different batch axis
model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0
# some models, like XLNet, need more than the last token in the presence of past_key_values
needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys())
# 2. init `attentions`, `hidden_states`, and `scores` tuples
scores = [] if (return_dict_in_generate and output_scores) else None
decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None
# 3. init tensors to use for "xla-compileable" generate function
batch_size, cur_len = shape_list(input_ids)
# initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences`
input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0)
generated = tf.concat([input_ids, input_ids_padding], axis=-1)
finished_sequences = tf.zeros((batch_size,), dtype=tf.bool)
# 4. define "xla-compile-able" stop-condition and auto-regressive function
# define condition fn
def greedy_search_cond_fn(generated, finished_sequences, cur_len, model_kwargs):
"""state termination condition fn."""
return ~tf.reduce_all(finished_sequences)
# define condition fn
def greedy_search_body_fn(generated, finished_sequences, cur_len, model_kwargs):
"""state update fn."""
if model_kwargs.get("past_key_values") is None or needs_full_input:
input_ids = generated[:, :cur_len]
else:
input_ids = tf.expand_dims(generated[:, cur_len - 1], -1)
model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs)
# forward pass to get next token logits
model_outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
next_token_logits = model_outputs.logits[:, -1]
# pre-process distribution
next_tokens_scores = logits_processor(generated, next_token_logits, cur_len)
# Store scores, attentions and hidden_states when required
if not use_xla and return_dict_in_generate:
if output_scores:
scores.append(next_tokens_scores)
if output_attentions and self.config.is_encoder_decoder:
decoder_attentions.append(model_outputs.decoder_attentions)
elif output_attentions and not self.config.is_encoder_decoder:
decoder_attentions.append(model_outputs.attentions)
if self.config.is_encoder_decoder:
cross_attentions.append(model_outputs.cross_attentions)
if output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(model_outputs.decoder_hidden_states)
elif output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(model_outputs.hidden_states)
# argmax
next_tokens = tf.argmax(next_tokens_scores, axis=-1, output_type=tf.int32)
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32)
next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq)
next_token_is_eos = tf.math.reduce_any(
tf.equal(
tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1)
),
axis=0,
)
finished_sequences = finished_sequences | next_token_is_eos
# update `generated` and `cur_len`
update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1)
generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens)
cur_len += 1
# update model_kwargs
if use_xla:
model_kwargs = self._update_model_kwargs_for_xla_generation(
model_outputs=model_outputs,
model_kwargs=model_kwargs,
cur_len=cur_len,
max_length=max_length,
batch_size=batch_size,
is_encoder_decoder=self.config.is_encoder_decoder,
batch_axis=cache_batch_axis,
)
else:
model_kwargs = self._update_model_kwargs_for_generation(
model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# if we don't cache past_key_values key values we need the whole input
if model_kwargs.get("past_key_values", None) is None:
# let's throw out `past_key_values` since we don't want `None` tensors
model_kwargs.pop("past_key_values", None)
return generated, finished_sequences, cur_len, model_kwargs
# 5. run generation
# 1st generation step has to be run before to initialize `past_key_values`
generated, finished_sequences, cur_len, model_kwargs = greedy_search_body_fn(
generated, finished_sequences, cur_len, model_kwargs
)
# 2-to-n generation steps can then be run in autoregressive fashion
# only in case 1st generation step does NOT yield EOS token though
maximum_iterations = max_length - cur_len
generated, _, cur_len, _ = tf.while_loop(
greedy_search_cond_fn,
greedy_search_body_fn,
(generated, finished_sequences, cur_len, model_kwargs),
maximum_iterations=maximum_iterations,
)
# 6. prepare outputs
if not use_xla:
# cut for backward compatibility
generated = generated[:, :cur_len]
if return_dict_in_generate:
if self.config.is_encoder_decoder:
# if model is an encoder-decoder, retrieve encoder attention weights
# and hidden states
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
scores = tuple(scores) if scores is not None else None
decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None
cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None
decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None
return TFGreedySearchEncoderDecoderOutput(
sequences=generated,
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return TFGreedySearchDecoderOnlyOutput(
sequences=generated,
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return generated
def sample(
self,
input_ids: tf.Tensor,
logits_processor: Optional[TFLogitsProcessorList] = None,
logits_warper: Optional[TFLogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
seed: Optional[Tuple[int, int]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
**model_kwargs,
) -> Union[TFSampleOutput, tf.Tensor]:
r"""
Generates sequences for models with a language modeling head using multinomial sampling.
Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`TFLogitsProcessorList`, *optional*):
An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
logits_warper (`TFLogitsProcessorList`, *optional*):
An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`]
used to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step.
max_length (`int`, *optional*, defaults to 20):
The maximum length of the sequence to be generated.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
seed (`List[int]`, *optional*):
Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the
`seed` argument from stateless functions in `tf.random`.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
model_kwargs:
Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an
encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.TFSampleDecoderOnlyOutput`], [`~generation.TFSampleEncoderDecoderOutput`] or `tf.Tensor`: A
`tf.Tensor` containing the generated tokens (default behaviour) or a
[`~generation.TFSampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.TFSampleEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import (
... AutoTokenizer,
... TFAutoModelForCausalLM,
... TFLogitsProcessorList,
... TFMinLengthLogitsProcessor,
... TFTopKLogitsWarper,
... TFTemperatureLogitsWarper,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = TFAutoModelForCausalLM.from_pretrained("gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids
>>> # instantiate logits processors
>>> logits_processor = TFLogitsProcessorList(
... [
... TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
... ]
... )
>>> # instantiate logits processors
>>> logits_warper = TFLogitsProcessorList(
... [
... TFTopKLogitsWarper(50),
... TFTemperatureLogitsWarper(0.7),
... ]
... )
>>> tf.random.set_seed(0)
>>> outputs = model.sample(input_ids, logits_processor=logits_processor, logits_warper=logits_warper)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today is a beautiful day, and I love my country. But when I look at Donald Trump,']
```"""
# 1. init greedy_search values
logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList()
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache)
use_xla = not tf.executing_eagerly()
# TODO (Joao): fix cache format or find programatic way to detect cache index
# GPT2 and other models has a slightly different cache structure, with a different batch axis
model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0
# some models, like XLNet, need more than the last token in the presence of past_key_values
needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys())
# 2. init `attentions`, `hidden_states`, and `scores` tuples
scores = [] if (return_dict_in_generate and output_scores) else None
decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None
# 3. init tensors to use for "xla-compileable" generate function
batch_size, cur_len = shape_list(input_ids)
# initialize `generated` (pre-populated with `pad_token_id`), `finished_sequences`
input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0)
generated = tf.concat([input_ids, input_ids_padding], axis=-1)
finished_sequences = tf.zeros((batch_size,), dtype=tf.bool)
# 4. define "xla-compile-able" stop-condition and auto-regressive function
def sample_cond_fn(generated, finished_sequences, cur_len, model_kwargs):
return ~tf.reduce_all(finished_sequences)
def sample_body_fn(generated, finished_sequences, cur_len, model_kwargs):
if model_kwargs.get("past_key_values") is None or needs_full_input:
input_ids = generated[:, :cur_len]
else:
input_ids = tf.expand_dims(generated[:, cur_len - 1], -1)
model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs)
# forward pass to get next token logits
model_outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
next_token_logits = model_outputs.logits[:, -1]
# pre-process distribution
next_tokens_scores = logits_processor(generated, next_token_logits, cur_len)
next_tokens_scores = logits_warper(generated, next_tokens_scores, cur_len)
# Store scores, attentions and hidden_states when required
if not use_xla and return_dict_in_generate:
if output_scores:
scores.append(next_tokens_scores)
if output_attentions and self.config.is_encoder_decoder:
decoder_attentions.append(model_outputs.decoder_attentions)
elif output_attentions and not self.config.is_encoder_decoder:
decoder_attentions.append(model_outputs.attentions)
if self.config.is_encoder_decoder:
cross_attentions.append(model_outputs.cross_attentions)
if output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(model_outputs.decoder_hidden_states)
elif output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(model_outputs.hidden_states)
# sample
if seed is not None:
sample_seed = seed
else:
sample_seed = tf.experimental.numpy.random.randint(tf.int32.min, tf.int32.max, (2,), dtype=tf.int32)
next_tokens = tf.squeeze(
tf.random.stateless_categorical(
logits=next_tokens_scores, num_samples=1, seed=sample_seed, dtype=tf.int32
),
axis=1,
)
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32)
next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq)
next_token_is_eos = tf.math.reduce_any(
tf.equal(
tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1)
),
axis=0,
)
finished_sequences = finished_sequences | next_token_is_eos
# update `generated` and `cur_len`
update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1)
generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens)
cur_len += 1
# update model_kwargs
if use_xla:
model_kwargs = self._update_model_kwargs_for_xla_generation(
model_outputs=model_outputs,
model_kwargs=model_kwargs,
cur_len=cur_len,
max_length=max_length,
batch_size=batch_size,
is_encoder_decoder=self.config.is_encoder_decoder,
batch_axis=cache_batch_axis,
)
else:
model_kwargs = self._update_model_kwargs_for_generation(
model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# if we don't cache past_key_values key values we need the whole input
if model_kwargs.get("past_key_values", None) is None:
# let's throw out `past_key_values` since we don't want `None` tensors
model_kwargs.pop("past_key_values", None)
return generated, finished_sequences, cur_len, model_kwargs
# 5. run generation
# 1st generation step has to be run before to initialize `past_key_values`
generated, finished_sequences, cur_len, model_kwargs = sample_body_fn(
generated, finished_sequences, cur_len, model_kwargs
)
# 2-to-n generation steps can then be run in autoregressive fashion
# only in case 1st generation step does NOT yield EOS token though
maximum_iterations = max_length - cur_len
generated, _, cur_len, _ = tf.while_loop(
sample_cond_fn,
sample_body_fn,
(generated, finished_sequences, cur_len, model_kwargs),
maximum_iterations=maximum_iterations,
)
# 6. prepare outputs
if not use_xla:
# cut for backward compatibility
generated = generated[:, :cur_len]
if return_dict_in_generate:
if self.config.is_encoder_decoder:
# if model is an encoder-decoder, retrieve encoder attention weights
# and hidden states
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
scores = tuple(scores) if scores is not None else None
decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None
cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None
decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None
return TFSampleEncoderDecoderOutput(
sequences=generated,
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return TFSampleDecoderOnlyOutput(
sequences=generated,
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return generated
@staticmethod
def _gather_beams(nested, beam_indices, batch_axis=0):
"""Gathers the beam slices indexed by beam_indices into new beam array."""
def gather_fn(tensor):
if batch_axis > 0:
# pushes all dimentions before the batch to the end, so we get (batch, beam_id, ...)
perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0)
tensor = tf.transpose(tensor, perm=perm)
gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1)
if batch_axis > 0:
# transposes back to the original dimensions
perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0)
perm = tf.math.invert_permutation(perm)
gathered_tensor = tf.transpose(gathered_tensor, perm=perm)
return gathered_tensor
return tf.nest.map_structure(gather_fn, nested)
def beam_search(
self,
input_ids: tf.Tensor,
do_sample: bool = False,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
early_stopping: Optional[Union[bool, str]] = None,
logits_processor: Optional[TFLogitsProcessorList] = None,
logits_warper: Optional[TFLogitsProcessorList] = None,
num_return_sequences: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
**model_kwargs,
) -> Union[TFBeamSearchOutput, TFBeamSampleOutput, tf.Tensor]:
r"""
Generates sequences for models with a language modeling head using beam search. If `do_sample` is `False`, uses
a greedy approach, otherwise does multinomial sampling without replacement.
Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
max_length (`int`, *optional*, defaults to 20):
The maximum length of the sequence to be generated.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
length_penalty (`float`, *optional*, defaults to 1.0):
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent
to the sequence length, which in turn is used to divide the score of the sequence. Since the score is
the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences,
while `length_penalty` < 0.0 encourages shorter sequences.
early_stopping (`bool` or `str`, *optional*, defaults to `False`):
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following
values: `True`, where the generation stops as soon as there are `num_beams` complete candidates;
`False`, where an heuristic is applied and the generation stops when is it very unlikely to find better
candidates; `"never"`, where the beam search procedure only stops when there cannot be better
candidates (canonical beam search algorithm).
logits_processor (`[TFLogitsProcessorList]`, *optional*):
An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
logits_warper (`TFLogitsProcessorList`, *optional*):
An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`]
used to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
model_kwargs:
Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an
encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.TFBeamSearchDecoderOnlyOutput`], [`~generation.TFBeamSearchEncoderDecoderOutput`] or
`tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a
[`~generation.TFBeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.TFBeamSearchEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
Examples:
```python
>>> from transformers import (
... AutoTokenizer,
... TFAutoModelForSeq2SeqLM,
... TFLogitsProcessorList,
... TFMinLengthLogitsProcessor,
... )
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="tf").input_ids
>>> # lets run beam search using 3 beams
>>> num_beams = 3
>>> # define decoder start token ids
>>> input_ids = tf.ones((1, num_beams, 1), dtype=tf.int32)
>>> input_ids = input_ids * model.generation_config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> encoder_outputs = model.get_encoder()(encoder_input_ids, return_dict=True)
>>> encoder_outputs.last_hidden_state = tf.repeat(
... tf.expand_dims(encoder_outputs.last_hidden_state, axis=0), num_beams, axis=1
... )
>>> model_kwargs = {"encoder_outputs": encoder_outputs}
>>> # instantiate logits processors
>>> logits_processor = TFLogitsProcessorList(
... [TFMinLengthLogitsProcessor(5, eos_token_id=model.generation_config.eos_token_id)]
... )
>>> outputs = model.beam_search(input_ids, logits_processor=logits_processor, **model_kwargs)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Wie alt bist du?']
```"""
def flatten_beam_dim(tensor, batch_axis=0):
"""Flattens the first two dimensions of a non-scalar array."""
shape = shape_list(tensor)
return tf.reshape(
tensor,
shape[:batch_axis] + [shape[batch_axis] * shape[batch_axis + 1]] + shape[batch_axis + 2 :],
)
def unflatten_beam_dim(tensor, num_beams, batch_axis=0):
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
shape = shape_list(tensor)
return tf.reshape(tensor, shape[:batch_axis] + [-1, num_beams] + shape[batch_axis + 1 :])
# 1. init beam_search values
logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList()
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences
)
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty
early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping
use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache)
use_xla = not tf.executing_eagerly()
# TODO (Joao): fix cache format or find programatic way to detect cache index
# GPT2 and other models has a slightly different cache structure, with a different batch axis
model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0
# some models, like XLNet, need more than the last token in the presence of past_key_values
needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys())
# 2. init `attentions`, `hidden_states`, and `scores` tuples
all_scores = [] if (return_dict_in_generate and output_scores) else None
decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None
# 3. init tensors to use for "xla-compileable" generate function
batch_size, num_beams, cur_len = shape_list(input_ids)
# per batch, beam-item holding current token in loop, pre-populated with `pad_token_id`
input_ids_padding = tf.ones((batch_size, num_beams, max_length - cur_len), dtype=tf.int32) * (
pad_token_id or 0
)
running_sequences = tf.concat([input_ids, input_ids_padding], axis=-1)
sequences = tf.ones((batch_size, num_beams, max_length), dtype=tf.int32) * (pad_token_id or 0)
# per batch,beam-item state bit indicating if sentence has finished.
is_sent_finished = tf.zeros((batch_size, num_beams), dtype=tf.bool)
# per batch, beam-item score, logprobs
running_scores = tf.tile(
tf.expand_dims(tf.convert_to_tensor([0.0] + [-1.0e9] * (num_beams - 1)), axis=0), [batch_size, 1]
)
scores = tf.ones((batch_size, num_beams)) * -1.0e9
# per batch beam indices
running_beam_indices = tf.ones((batch_size, num_beams, max_length), dtype=tf.int32) * -1
beam_indices = tf.ones((batch_size, num_beams, max_length), dtype=tf.int32) * -1
# flatten beam dim
if "encoder_outputs" in model_kwargs:
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
model_kwargs["encoder_outputs"]["last_hidden_state"]
)
if "attention_mask" in model_kwargs:
model_kwargs["attention_mask"] = flatten_beam_dim(model_kwargs["attention_mask"])
# 4. define "xla-compile-able" stop-condition and auto-regressive function
# define stop-condition and auto-regressive function
def beam_search_cond_fn(
cur_len,
running_sequences,
running_scores,
running_beam_indices,
sequences,
scores,
beam_indices,
is_sent_finished,
model_kwargs,
):
"""
Beam Search termination condition function -- halts the generation loop if any of these conditions becomes
False
"""
# 1. is less than max length?
not_max_length_yet = cur_len < max_length
# 2. can the new beams still improve?
# early_stopping == False -> apply heuristic = always get the best score from `cur_len`. See the discussion
# below for more details.
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
# early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of
# length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there.
if early_stopping == "never" and length_penalty > 0.0:
best_running_score = running_scores[:, :1] / (max_length**length_penalty)
else:
best_running_score = running_scores[:, :1] / (tf.cast(cur_len, dtype=tf.float32) ** length_penalty)
worst_finished_score = tf.where(
is_sent_finished, tf.math.reduce_min(scores, axis=1, keepdims=True), -1.0e9
)
improvement_still_possible = tf.math.reduce_any(best_running_score > worst_finished_score)
# 3. is there still a beam that has not finished?
still_open_beam = ~(tf.math.reduce_all(is_sent_finished) & (early_stopping is True))
return not_max_length_yet & still_open_beam & improvement_still_possible
def beam_search_body_fn(
cur_len,
running_sequences,
running_scores,
running_beam_indices,
sequences,
scores,
beam_indices,
is_sent_finished,
model_kwargs,
):
"""
Beam Search iterative update function -- each iteration adds a new token and updates the best sequences
seen so far
"""
# 1. Forward current tokens
if model_kwargs.get("past_key_values") is None or needs_full_input:
input_ids = running_sequences[:, :, :cur_len]
else:
input_ids = tf.expand_dims(running_sequences[:, :, cur_len - 1], -1)
model_inputs = self.prepare_inputs_for_generation(
flatten_beam_dim(input_ids), use_cache=use_cache, **model_kwargs
)
model_outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
logits = unflatten_beam_dim(model_outputs.logits[:, -1], num_beams)
# 2. Compute log probs
# get log probabilities from logits, process logits with processors (*e.g.* min_length, ...), and
# add new logprobs to existing running logprobs scores.
log_probs = tf.nn.log_softmax(logits)
log_probs = logits_processor(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len)
log_probs = unflatten_beam_dim(log_probs, num_beams)
log_probs_processed = log_probs
log_probs = log_probs + tf.expand_dims(running_scores, axis=2)
if do_sample:
# Note: logits warpers are intentionally applied after adding running beam scores. On some logits
# warpers (like top_p) this is indiferent, but on others (like temperature) it is not. For reference,
# see https://github.com/huggingface/transformers/pull/5420#discussion_r449779867
log_probs = logits_warper(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len)
log_probs = unflatten_beam_dim(log_probs, num_beams)
vocab_size = log_probs.shape[2]
log_probs = tf.reshape(log_probs, (batch_size, num_beams * vocab_size))
# Store scores, attentions and hidden_states when required
if not use_xla and return_dict_in_generate:
if output_scores:
all_scores.append(
logits_warper(
flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs_processed), cur_len
)
)
if output_attentions and self.config.is_encoder_decoder:
decoder_attentions.append(model_outputs.decoder_attentions)
elif output_attentions and not self.config.is_encoder_decoder:
decoder_attentions.append(model_outputs.attentions)
if self.config.is_encoder_decoder:
cross_attentions.append(model_outputs.cross_attentions)
if output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(model_outputs.decoder_hidden_states)
elif output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(model_outputs.hidden_states)
# 3. Retrieve top-K
# Each item in batch has num_beams * vocab_size candidate sequences. For each item, get the top 2*k
# candidates with the highest log-probabilities. We gather the top 2*K beams here so that even if the
# best K sequences reach EOS simultaneously, we have another K sequences remaining to continue the live
# beam search.
# Gather the top 2*K scores from _all_ beams.
# Gather 2*k top beams.
# Recover the beam index by floor division.
# Recover token id by modulo division and expand Id array for broadcasting.
# Update sequences for the 2*K top-k new sequences.
beams_to_keep = 2 * num_beams
if do_sample:
topk_indices = sample_without_replacement(log_probs, beams_to_keep)
topk_log_probs = tf.gather(log_probs, topk_indices, axis=1, batch_dims=1)
else:
topk_log_probs, topk_indices = tf.math.top_k(log_probs, k=beams_to_keep)
topk_current_beam_indices = topk_indices // vocab_size
topk_running_beam_indices = self._gather_beams(running_beam_indices, topk_current_beam_indices)
topk_running_sequences = self._gather_beams(running_sequences, topk_current_beam_indices)
topk_ids = topk_indices % vocab_size
# writes the new token
indices_batch = tf.repeat(tf.range(batch_size), [beams_to_keep])
indices_beam = tf.tile(tf.range(beams_to_keep), [batch_size])
update_indices = tf.stack(
[indices_batch, indices_beam, tf.broadcast_to(cur_len, [batch_size * beams_to_keep])], axis=-1
)
topk_sequences = tf.tensor_scatter_nd_update(
tensor=topk_running_sequences,
indices=update_indices,
updates=tf.reshape(topk_ids, [batch_size * beams_to_keep]),
)
# we want to store the beam indices with batch information -> real beam index = beam index % num beams
batch_modified_indices = topk_current_beam_indices + tf.broadcast_to(
tf.expand_dims(tf.range(batch_size) * num_beams, axis=1), topk_current_beam_indices.shape
)
topk_beam_indices = tf.tensor_scatter_nd_update(
tensor=topk_running_beam_indices,
indices=update_indices,
updates=tf.reshape(batch_modified_indices, [batch_size * beams_to_keep]),
)
# 4. Check which sequences have ended
# Update current sequences: Did the top `num_beams` sequences reach an end marker?
# To prevent these just finished sequences from being added to the current sequences
# set of active beam search sequences, set their log probs to a very large negative value.
if eos_token_id is None:
eos_in_next_token = tf.zeros(topk_sequences[:, :, cur_len].shape, dtype=tf.bool)
else:
eos_in_next_token = tf.math.reduce_any(
tf.equal(
tf.broadcast_to(
topk_sequences[:, :, cur_len], [len(eos_token_id)] + topk_sequences[:, :, cur_len].shape
),
tf.expand_dims(tf.expand_dims(eos_token_id, -1), -1),
),
axis=0,
)
did_topk_just_finished = eos_in_next_token & tf.broadcast_to(
tf.concat((tf.ones((num_beams), dtype=tf.bool), tf.zeros((num_beams), dtype=tf.bool)), axis=0),
shape_list(eos_in_next_token),
)
# non-top `num_beams` eos tokens can't be used to finish a beam, but the others can't be used in the next
# running sentences either
running_topk_log_probs = topk_log_probs + tf.cast(eos_in_next_token, tf.float32) * -1.0e9
# 5. Get running sequences scores for next
# Determine the top k beam indices (from top 2*k beams) from log probs and gather top k beams
# (from top 2*k beams).
next_topk_indices = tf.math.top_k(running_topk_log_probs, k=num_beams)[1]
next_running_sequences, next_running_scores, next_running_beam_indices = self._gather_beams(
[topk_sequences, running_topk_log_probs, topk_beam_indices], next_topk_indices
)
# 6. Process topk logits
# Further process log probs:
# - add length penalty
# - make sure no scores can be added anymore if beam is full
# - make sure still running sequences cannot be chosen as finalized beam
topk_log_probs = topk_log_probs / (tf.cast(cur_len, dtype=tf.float32) ** length_penalty)
beams_in_batch_are_full = tf.broadcast_to(
tf.math.reduce_all(is_sent_finished, axis=-1, keepdims=True), shape_list(did_topk_just_finished)
) & (early_stopping is True)
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
topk_log_probs += tf.cast(add_penalty, tf.float32) * -1.0e9
# 7. Get scores, sequences, is sentence finished for next.
# Combine sequences, scores, and flags along the beam dimension and compare new finished sequence scores
# to existing finished scores and select the best from the new set of beams
merged_sequences = tf.concat([sequences, topk_sequences], axis=1)
merged_scores = tf.concat([scores, topk_log_probs], axis=1)
merged_beams = tf.concat([beam_indices, topk_beam_indices], axis=1)
merged_is_sent_finished = tf.concat([is_sent_finished, did_topk_just_finished], axis=1)
topk_merged_indices = tf.math.top_k(merged_scores, k=num_beams)[1]
next_sequences, next_scores, next_beam_indices, next_is_sent_finished = self._gather_beams(
[merged_sequences, merged_scores, merged_beams, merged_is_sent_finished], topk_merged_indices
)
# 8. Prepare data for the next iteration
# Determine the top k beam indices from the original set of all beams. With these, gather the top k
# beam-associated caches.
cur_len = cur_len + 1
if "past_key_values" in model_outputs:
cache = tf.nest.map_structure(
lambda tensor: unflatten_beam_dim(tensor, num_beams, batch_axis=cache_batch_axis),
model_outputs.past_key_values,
)
next_running_indices = self._gather_beams(topk_current_beam_indices, next_topk_indices)
next_cache = self._gather_beams(cache, next_running_indices, batch_axis=cache_batch_axis)
model_outputs["past_key_values"] = tf.nest.map_structure(
lambda tensor: flatten_beam_dim(tensor, batch_axis=cache_batch_axis), next_cache
)
if use_xla:
next_model_kwargs = self._update_model_kwargs_for_xla_generation(
model_outputs=model_outputs,
model_kwargs=model_kwargs,
cur_len=cur_len,
max_length=max_length,
batch_size=(batch_size * num_beams),
is_encoder_decoder=self.config.is_encoder_decoder,
batch_axis=cache_batch_axis,
)
else:
next_model_kwargs = self._update_model_kwargs_for_generation(
model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# if we don't cache past_key_values key values we need the whole input
if model_kwargs.get("past_key_values", None) is None:
# let's throw out `past_key_values` since we don't want `None` tensors
model_kwargs.pop("past_key_values", None)
return (
cur_len,
next_running_sequences,
next_running_scores,
next_running_beam_indices,
next_sequences,
next_scores,
next_beam_indices,
next_is_sent_finished,
next_model_kwargs,
)
# 5. run generation
# 1st generation step has to be run before to initialize `past_key_values` (if active)
(
cur_len,
running_sequences,
running_scores,
running_beam_indices,
sequences,
scores,
beam_indices,
is_sent_finished,
model_kwargs,
) = beam_search_body_fn(
cur_len,
running_sequences,
running_scores,
running_beam_indices,
sequences,
scores,
beam_indices,
is_sent_finished,
model_kwargs,
)
# 2-to-n generation steps can then be run in autoregressive fashion (only in case 1st generation step does
# NOT yield EOS token though)
maximum_iterations = max_length - cur_len
(
cur_len,
running_sequences,
running_scores,
running_beam_indices,
sequences,
scores,
beam_indices,
is_sent_finished,
_,
) = tf.while_loop(
beam_search_cond_fn,
beam_search_body_fn,
(
cur_len,
running_sequences,
running_scores,
running_beam_indices,
sequences,
scores,
beam_indices,
is_sent_finished,
model_kwargs,
),
maximum_iterations=maximum_iterations,
)
# 6. prepare outputs
# Account for the edge-case where there are no finished sequences for a particular batch item. If so, return
# running sequences for that batch item.
none_finished = tf.math.reduce_any(is_sent_finished, axis=1)
sequences = tf.where(none_finished[:, None, None], sequences, running_sequences)
beam_indices = tf.where(none_finished[:, None, None], beam_indices, running_beam_indices)
# Apply the length penalty so that running scores match the finalized scores if they are used
running_scores = running_scores / (tf.cast(cur_len, dtype=tf.float32) ** length_penalty)
scores = tf.where(none_finished[:, None], scores, running_scores)
# Take best beams for each batch (the score is sorted in descending order)
sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :])
scores = flatten_beam_dim(scores[:, :num_return_sequences])
beam_indices = flatten_beam_dim(beam_indices[:, :num_return_sequences, :])
if not use_xla:
# Cut for backward compatibility
sequences = sequences[:, :cur_len]
beam_indices = beam_indices[:, :cur_len]
if return_dict_in_generate:
if self.config.is_encoder_decoder:
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
output_cls = TFBeamSampleEncoderDecoderOutput if do_sample else TFBeamSearchEncoderDecoderOutput
return output_cls(
sequences=sequences,
sequences_scores=scores,
scores=all_scores,
beam_indices=beam_indices,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
output_cls = TFBeamSampleDecoderOnlyOutput if do_sample else TFBeamSearchDecoderOnlyOutput
return output_cls(
sequences=sequences,
sequences_scores=scores,
scores=all_scores,
beam_indices=beam_indices,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return sequences
def contrastive_search(
self,
input_ids: tf.Tensor,
top_k: Optional[int] = 1,
penalty_alpha: Optional[float] = 0,
logits_processor: Optional[TFLogitsProcessorList] = None,
logits_warper: Optional[TFLogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
**model_kwargs,
) -> Union[TFContrastiveSearchOutput, tf.Tensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
top_k (`int`, *optional*, defaults to 1):
The size of the candidate set that is used to re-rank for contrastive search
penalty_alpha (`float`, *optional*, defaults to 0):
The degeneration penalty for contrastive search; activate when it is larger than 0
logits_processor (`TFLogitsProcessorList`, *optional*):
An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
logits_warper (`TFLogitsProcessorList`, *optional*):
An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`]
used to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step.
max_length (`int`, *optional*, defaults to 20):
The maximum length of the sequence to be generated.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
model_kwargs:
Additional model specific keyword arguments will be forwarded to the `call` function of the model. If
model is an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.TFContrastiveSearchDecoderOnlyOutput`],
[`~generation.TFContrastiveSearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the
generated tokens (default behaviour) or a [`~generation.TFContrastiveySearchDecoderOnlyOutput`] if
`model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a
[`~generation.TFContrastiveSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`.
Examples:
```python
>>> from transformers import AutoTokenizer, TFAutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
>>> model = TFAutoModelForCausalLM.from_pretrained("facebook/opt-125m")
>>> # set pad_token_id to eos_token_id because OPT does not have a PAD token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "DeepMind Company is"
>>> input_ids = tokenizer(input_prompt, return_tensors="tf")
>>> outputs = model.contrastive_search(**input_ids, penalty_alpha=0.6, top_k=4, max_length=64)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it']
```"""
def gather_best_candidate(nested, selected_idx_stacked, batch_axis=0):
"""Gathers the slices indexed by selected_idx_stacked from a potentially nested structure of tensors."""
def gather_fn(tensor):
gathered_tensor = tf.gather(params=tensor, indices=selected_idx_stacked, axis=batch_axis)
return gathered_tensor
return tf.nest.map_structure(gather_fn, nested)
# 1. init greedy_search values
logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList()
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
use_cache = True # In contrastive search, we always use cache
model_kwargs.pop("use_cache", None)
use_xla = not tf.executing_eagerly()
# TODO (Joao): fix cache format or find programatic way to detect cache index
# GPT2 and other models has a slightly different cache structure, with a different batch axis
model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0
# 2. init `attentions`, `hidden_states`, and `scores` tuples
scores = [] if (return_dict_in_generate and output_scores) else None
decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None
# 3. init tensors to use for "xla-compileable" generate function
batch_size, cur_len = shape_list(input_ids)
# initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences`
input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0)
generated = tf.concat([input_ids, input_ids_padding], axis=-1)
finished_sequences = tf.zeros((batch_size,), dtype=tf.bool)
# 4. define "xla-compile-able" stop-condition and auto-regressive function
# define condition fn
def contrastive_search_cond_fn(
generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables
):
"""state termination condition fn."""
return ~tf.reduce_all(finished_sequences)
# define condition fn
def contrastive_search_body_fn(
generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables
):
"""state update fn."""
# if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
# (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
if model_kwargs.get("past_key_values") is None:
# prepare inputs
model_inputs = self.prepare_inputs_for_generation(
generated[:, :cur_len], use_cache=use_cache, **model_kwargs
)
# encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
# the `encoder_outputs`
outputs = self(
**model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
)
# last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
# previous tokens)
if self.config.is_encoder_decoder:
last_hidden_states = outputs.decoder_hidden_states[-1]
else:
last_hidden_states = outputs.hidden_states[-1]
# XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across
# iterations (with fixed shapes)
if use_xla:
last_hidden_states = tf.pad(last_hidden_states, [[0, 0], [0, max_length - cur_len], [0, 0]])
# next logit for contrastive search to select top-k candidate tokens
logit_for_next_step = outputs.logits[:, -1, :]
if use_xla:
model_kwargs = self._update_model_kwargs_for_xla_generation(
model_outputs=outputs,
model_kwargs=model_kwargs,
cur_len=cur_len,
max_length=max_length,
batch_size=batch_size,
is_encoder_decoder=self.config.is_encoder_decoder,
batch_axis=cache_batch_axis,
)
else:
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# Expands model inputs top_k times, for batched forward passes (akin to beam search).
_, model_kwargs = self._expand_inputs_for_generation(
expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
)
past_key_values = model_kwargs.get("past_key_values")
if past_key_values is None:
raise ValueError(
f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
"for contrastive search."
)
elif (
not isinstance(past_key_values[0], (tuple, tf.Tensor))
or past_key_values[0][0].shape[0] != batch_size
):
raise ValueError(
f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
"used for contrastive search without further modifications."
)
else:
logit_for_next_step = next_step_cached_variables["logit_for_next_step"]
last_hidden_states = next_step_cached_variables["last_hidden_states"]
outputs = next_step_cached_variables["outputs"]
# contrastive_search main logic start:
# contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
# degeneration penalty
logit_for_next_step = logits_processor(generated, logit_for_next_step, cur_len)
logit_for_next_step = logits_warper(generated, logit_for_next_step, cur_len)
next_probs = stable_softmax(logit_for_next_step, axis=-1)
top_k_probs, top_k_ids = tf.math.top_k(next_probs, k=top_k)
# Store scores, attentions and hidden_states when required
if not use_xla and return_dict_in_generate:
if output_scores:
scores.append(logit_for_next_step)
if output_attentions and self.config.is_encoder_decoder:
decoder_attentions.append(outputs.decoder_attentions)
elif output_attentions and not self.config.is_encoder_decoder:
decoder_attentions.append(outputs.attentions)
if self.config.is_encoder_decoder:
cross_attentions.append(outputs.cross_attentions)
if output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(outputs.decoder_hidden_states)
elif output_hidden_states and self.config.is_encoder_decoder:
decoder_hidden_states.append(outputs.hidden_states)
# Replicates the new past_key_values to match the `top_k` candidates
model_kwargs["past_key_values"] = tf.nest.map_structure(
lambda tensor: tf.repeat(tensor, top_k, axis=cache_batch_axis), model_kwargs["past_key_values"]
)
# compute the candidate tokens by the language model and collects their hidden_states
next_model_inputs = self.prepare_inputs_for_generation(
tf.reshape(top_k_ids, [-1, 1]), use_cache=use_cache, **model_kwargs
)
outputs = self(
**next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
)
next_past_key_values = self._extract_past_from_model_output(outputs)
logits = outputs.logits[:, -1, :]
# name is different for encoder-decoder and decoder-only models
if self.config.is_encoder_decoder:
next_hidden = outputs.decoder_hidden_states[-1]
full_hidden_states = outputs.decoder_hidden_states
else:
next_hidden = outputs.hidden_states[-1]
full_hidden_states = outputs.hidden_states
context_hidden = tf.repeat(last_hidden_states[:, :cur_len, :], top_k, axis=0)
# compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
# model confidence
selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)
# converts indices to a dimension of top_k to the stacked top_k * batch_size dimension, for indexing
# without a need to reshape on tensors that have these two dimensions stacked
selected_idx_stacked = selected_idx + tf.range(selected_idx.shape[0], dtype=tf.int64) * top_k
# prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
# the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
# (model confidence minus degeneration penalty); (6) decoder hidden_states
next_tokens = tf.gather(top_k_ids, selected_idx, axis=1, batch_dims=1)
next_hidden = gather_best_candidate(next_hidden, selected_idx_stacked)
# XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across
# iterations (with fixed shapes)
if use_xla:
last_hidden_states = dynamic_update_slice(last_hidden_states, next_hidden, [0, cur_len, 0])
else:
last_hidden_states = tf.concat([last_hidden_states, next_hidden], axis=1)
next_decoder_hidden_states = gather_best_candidate(full_hidden_states, selected_idx_stacked)
next_past_key_values = gather_best_candidate(
next_past_key_values, selected_idx_stacked, batch_axis=cache_batch_axis
)
logit_for_next_step = gather_best_candidate(logits, selected_idx_stacked)
# Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
if self.config.is_encoder_decoder:
next_step_cross_attentions = ()
next_step_decoder_attentions = ()
if output_attentions:
next_step_cross_attentions = gather_best_candidate(outputs.cross_attentions, selected_idx_stacked)
next_step_decoder_attentions = gather_best_candidate(
outputs.decoder_attentions, selected_idx_stacked
)
outputs = TFSeq2SeqLMOutput(
past_key_values=next_past_key_values,
decoder_hidden_states=next_decoder_hidden_states,
decoder_attentions=next_step_decoder_attentions or None,
cross_attentions=next_step_cross_attentions or None,
)
else:
next_step_attentions = ()
if output_attentions:
next_step_attentions = gather_best_candidate(outputs.attentions, selected_idx_stacked)
outputs = TFCausalLMOutputWithPast(
past_key_values=next_past_key_values,
hidden_states=next_decoder_hidden_states,
attentions=next_step_attentions or None,
)
# contrastive_search main logic end
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32)
next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq)
next_token_is_eos = tf.math.reduce_any(
tf.equal(
tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1)
),
axis=0,
)
finished_sequences = finished_sequences | next_token_is_eos
# update `generated` and `cur_len`
update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1)
generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens)
cur_len += 1
if use_xla:
# NOTE: 1) relative to other generation strategies, contrastive search is always running forward
# passes one step ahead -- hence the `cur_len=cur_len + 1`; 2) the attention mask here is expanded from
# [batch_size, ...] to [batch_size*top_k, ...] -- hence the `batch_size=batch_size * top_k`
model_kwargs = self._update_model_kwargs_for_xla_generation(
model_outputs=outputs,
model_kwargs=model_kwargs,
cur_len=cur_len + 1,
max_length=max_length,
batch_size=batch_size * top_k,
is_encoder_decoder=self.config.is_encoder_decoder,
batch_axis=cache_batch_axis,
)
else:
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
next_step_cached_variables = {
"logit_for_next_step": logit_for_next_step,
"last_hidden_states": last_hidden_states,
"outputs": outputs,
}
return generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables
# 5. run generation
# 1st generation step has to be run before to initialize `past_key_values`
generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables = contrastive_search_body_fn(
generated, finished_sequences, cur_len, model_kwargs, None
)
# 2-to-n generation steps can then be run in autoregressive fashion
# only in case 1st generation step does NOT yield EOS token though
maximum_iterations = max_length - cur_len
generated, _, cur_len, _, _ = tf.while_loop(
contrastive_search_cond_fn,
contrastive_search_body_fn,
(generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables),
maximum_iterations=maximum_iterations,
)
# 6. prepare outputs
if not use_xla:
# cut for backward compatibility
generated = generated[:, :cur_len]
if return_dict_in_generate:
if self.config.is_encoder_decoder:
# if model is an encoder-decoder, retrieve encoder attention weights
# and hidden states
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
scores = tuple(scores) if scores is not None else None
decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None
cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None
decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None
return TFContrastiveSearchEncoderDecoderOutput(
sequences=generated,
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return TFContrastiveSearchDecoderOnlyOutput(
sequences=generated,
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return generated
def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
"""
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
top_k (`int`, *optional*, defaults to 0):
If > 0, only keep the top k tokens with highest probability (top-k filtering)
top_p (`float`, *optional*, defaults to 1.0):
If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimumber of tokens we keep per batch example in the output.
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
logits_shape = shape_list(logits)
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1]) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < tf.math.top_k(logits, k=top_k)[0][..., -1, None]
logits = tf.where(indices_to_remove, filter_value, logits)
if top_p < 1.0:
sorted_indices = tf.argsort(logits, direction="DESCENDING")
sorted_logits = tf.gather(
logits, sorted_indices, axis=-1, batch_dims=1
) # expects logits to be of dim (batch_size, vocab_size)
cumulative_probs = tf.math.cumsum(stable_softmax(sorted_logits, axis=-1), axis=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove = tf.concat(
[
tf.zeros_like(sorted_indices_to_remove[:, :min_tokens_to_keep]),
sorted_indices_to_remove[:, min_tokens_to_keep:],
],
-1,
)
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove = tf.concat(
[tf.zeros_like(sorted_indices_to_remove[:, :1]), sorted_indices_to_remove[:, :-1]],
-1,
)
# scatter sorted tensors to original indexing
indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove, sorted_indices)
logits = tf.where(indices_to_remove, filter_value, logits)
return logits
def scatter_values_on_batch_indices(values, batch_indices):
shape = shape_list(batch_indices)
# broadcast batch dim to shape
broad_casted_batch_dims = tf.reshape(tf.broadcast_to(tf.expand_dims(tf.range(shape[0]), axis=-1), shape), [1, -1])
# transform batch_indices to pair_indices
pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0))
# scatter values to pair indices
return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), shape)
def sample_without_replacement(logits, num_samples):
"""
categorical sampling without replacement is currently not implemented the gumbel-max trick will do for now see
https://github.com/tensorflow/tensorflow/issues/9260 for more info
"""
z = -tf.math.log(-tf.math.log(tf.random.uniform(shape_list(logits), 0, 1)))
_, indices = tf.nn.top_k(logits + z, num_samples)
return indices
def _ranking_fast(
context_hidden: tf.Tensor,
next_hidden: tf.Tensor,
next_top_k_probs: tf.Tensor,
alpha: float,
beam_width: int,
) -> tf.Tensor:
"""
Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
row in the batch.
"""
norm_context_hidden = context_hidden / tf.norm(context_hidden, axis=2, keepdims=True)
norm_next_hidden = next_hidden / tf.norm(next_hidden, axis=2, keepdims=True)
cosine_matrix = tf.squeeze(tf.linalg.matmul(norm_context_hidden, norm_next_hidden, transpose_b=True), axis=-1)
degeneration_penalty = tf.reduce_max(cosine_matrix, axis=-1)
next_top_k_probs = tf.reshape(next_top_k_probs, shape=[-1])
contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
contrastive_score = tf.reshape(contrastive_score, shape=[-1, beam_width])
selected_idx = tf.argmax(contrastive_score, axis=1)
return selected_idx
|