Spaces:
Running
on
T4
Running
on
T4
File size: 4,072 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
#include <torch/extension.h>
#include <ATen/ATen.h>
#include "cuda_launch.h"
#include "cuda_kernel.h"
#include <vector>
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
std::vector<at::Tensor> index_max_kernel(
at::Tensor index_vals, // [batch_size, 32, num_block]
at::Tensor indices, // [batch_size, num_block],
int A_num_block,
int B_num_block
) {
int batch_size = indices.size(0);
int num_block = indices.size(1);
at::Tensor max_vals = at::zeros({batch_size, A_num_block * 32}, index_vals.options());
at::Tensor max_vals_scatter = at::zeros({batch_size, 32, num_block}, index_vals.options());
dim3 threads(256);
dim3 blocks(batch_size);
int shared_mem = A_num_block * 32 * sizeof(float);
index_max_cuda_kernel<<<blocks, threads, shared_mem>>>(
index_vals.data_ptr<float>(),
indices.data_ptr<int>(),
max_vals.data_ptr<float>(),
max_vals_scatter.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
num_block
);
return {max_vals, max_vals_scatter};
}
at::Tensor mm_to_sparse_kernel(
at::Tensor dense_A, // [batch_size, A_num_block, dim, 32]
at::Tensor dense_B, // [batch_size, B_num_block, dim, 32]
at::Tensor indices // [batch_size, num_block]
) {
int batch_size = dense_A.size(0);
int A_num_block = dense_A.size(1);
int B_num_block = dense_B.size(1);
int dim = dense_A.size(2);
int num_block = indices.size(1);
at::Tensor sparse_C = at::zeros({batch_size, num_block, 32, 32}, dense_A.options());
dim3 threads(64, 4);
dim3 blocks(num_block / 4, batch_size);
mm_to_sparse_cuda_kernel<<<blocks, threads>>>(
dense_A.data_ptr<float>(),
dense_B.data_ptr<float>(),
indices.data_ptr<int>(),
sparse_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
dim,
num_block
);
return sparse_C;
}
at::Tensor sparse_dense_mm_kernel(
at::Tensor sparse_A, // [batch_size, num_block, 32, 32]
at::Tensor indices, // [batch_size, num_block]
at::Tensor dense_B, // [batch_size, B_num_block, dim, 32]
int A_num_block
) {
int batch_size = sparse_A.size(0);
int num_block = sparse_A.size(1);
int B_num_block = dense_B.size(1);
int dim = dense_B.size(2);
at::Tensor dense_C = at::zeros({batch_size, A_num_block, dim, 32}, dense_B.options());
dim3 threads(128, 2);
dim3 blocks(num_block / 2, batch_size);
sparse_dense_mm_cuda_kernel<<<blocks, threads>>>(
sparse_A.data_ptr<float>(),
indices.data_ptr<int>(),
dense_B.data_ptr<float>(),
dense_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
dim,
num_block
);
return dense_C;
}
at::Tensor reduce_sum_kernel(
at::Tensor sparse_A, // [batch_size, num_block, 32, 32]
at::Tensor indices, // [batch_size, num_block]
int A_num_block,
int B_num_block
) {
int batch_size = sparse_A.size(0);
int num_block = sparse_A.size(1);
at::Tensor dense_C = at::zeros({batch_size, A_num_block, 32}, sparse_A.options());
dim3 threads(32, 4);
dim3 blocks(num_block / 4, batch_size);
reduce_sum_cuda_kernel<<<blocks, threads>>>(
sparse_A.data_ptr<float>(),
indices.data_ptr<int>(),
dense_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
num_block
);
return dense_C;
}
at::Tensor scatter_kernel(
at::Tensor dense_A, // [batch_size, A_num_block, 32]
at::Tensor indices, // [batch_size, num_block]
int B_num_block
) {
int batch_size = dense_A.size(0);
int A_num_block = dense_A.size(1);
int num_block = indices.size(1);
at::Tensor sparse_C = at::zeros({batch_size, num_block, 32, 32}, dense_A.options());
dim3 threads(32, 4);
dim3 blocks(num_block / 4, batch_size);
scatter_cuda_kernel<<<blocks, threads>>>(
dense_A.data_ptr<float>(),
indices.data_ptr<int>(),
sparse_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
num_block
);
return sparse_C;
}
|