Spaces:
Running
on
T4
Running
on
T4
File size: 10,075 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for CPMAnt."""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"openbmb/cpm-ant-10b": 1024,
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
class WordpieceTokenizer(object):
def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, token):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
return [self.unk_token]
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token)
start += 1
else:
sub_tokens.append(cur_substr)
start = end
return sub_tokens
class CpmAntTokenizer(PreTrainedTokenizer):
"""
Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bod_token (`str`, *optional*, defaults to `"<d>"`):
The beginning of document token.
eod_token (`str`, *optional*, defaults to `"</d>"`):
The end of document token.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token.
line_token (`str`, *optional*, defaults to `"</n>"`):
The line token.
space_token (`str`, *optional*, defaults to `"</_>"`):
The space token.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
add_prefix_space = False
def __init__(
self,
vocab_file,
bod_token="<d>",
eod_token="</d>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
unk_token="<unk>",
line_token="</n>",
space_token="</_>",
padding_side="left",
**kwargs,
):
requires_backends(self, ["jieba"])
self.bod_token = bod_token
self.eod_token = eod_token
self.encoder = load_vocab(vocab_file)
self.encoder[" "] = self.encoder[space_token]
self.encoder["\n"] = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
self.decoder = {v: k for k, v in self.encoder.items()}
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token)
super().__init__(
bod_token=bod_token,
eod_token=eod_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
unk_token=unk_token,
line_token=line_token,
space_token=space_token,
padding_side=padding_side,
**kwargs,
)
@property
def bod_token_id(self):
return self.encoder[self.bod_token]
@property
def eod_token_id(self):
return self.encoder[self.eod_token]
@property
def newline_id(self):
return self.encoder["\n"]
@property
def vocab_size(self) -> int:
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def _tokenize(self, text):
"""Tokenize a string."""
output_tokens = []
for x in jieba.cut(text, cut_all=False):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(x))
return output_tokens
def _decode(self, token_ids, **kwargs):
"""Decode ids into a string."""
token_ids = [i for i in token_ids if i >= 0]
token_ids = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(token_ids, **kwargs)
def check(self, token):
return token in self.encoder
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return "".join(tokens)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
index = 0
if " " in self.encoder:
self.encoder["</_>"] = self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
self.encoder["</n>"] = self.encoder["\n"]
del self.encoder["\n"]
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A CPMAnt sequence has the following format:
- single sequence: `[BOS] Sequence`.
Args:
token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added.
token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added.
Returns:
`List[int]`: The model input with special tokens.
"""
if token_ids_1 is None:
return [self.bos_token_id] + token_ids_0
return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`): List of IDs.
token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
return [1] + ([0] * len(token_ids_0))
|