Spaces:
Starting
on
T4
Starting
on
T4
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License.from typing import List, Union | |
from typing import List, Union | |
from ..utils import is_torch_available | |
from .base import Pipeline | |
if is_torch_available(): | |
from ..models.auto.modeling_auto import MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING | |
from ..models.speecht5.modeling_speecht5 import SpeechT5HifiGan | |
DEFAULT_VOCODER_ID = "microsoft/speecht5_hifigan" | |
class TextToAudioPipeline(Pipeline): | |
""" | |
Text-to-audio generation pipeline using any `AutoModelForTextToWaveform` or `AutoModelForTextToSpectrogram`. This | |
pipeline generates an audio file from an input text and optional other conditional inputs. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> pipe = pipeline(model="suno/bark-small") | |
>>> output = pipe("Hey it's HuggingFace on the phone!") | |
>>> audio = output["audio"] | |
>>> sampling_rate = output["sampling_rate"] | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This pipeline can currently be loaded from [`pipeline`] using the following task identifiers: `"text-to-speech"` or | |
`"text-to-audio"`. | |
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-to-speech). | |
""" | |
def __init__(self, *args, vocoder=None, sampling_rate=None, **kwargs): | |
super().__init__(*args, **kwargs) | |
if self.framework == "tf": | |
raise ValueError("The TextToAudioPipeline is only available in PyTorch.") | |
self.vocoder = None | |
if self.model.__class__ in MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING.values(): | |
self.vocoder = ( | |
SpeechT5HifiGan.from_pretrained(DEFAULT_VOCODER_ID).to(self.model.device) | |
if vocoder is None | |
else vocoder | |
) | |
self.sampling_rate = sampling_rate | |
if self.vocoder is not None: | |
self.sampling_rate = self.vocoder.config.sampling_rate | |
if self.sampling_rate is None: | |
# get sampling_rate from config and generation config | |
config = self.model.config | |
gen_config = self.model.__dict__.get("generation_config", None) | |
if gen_config is not None: | |
config.update(gen_config.to_dict()) | |
for sampling_rate_name in ["sample_rate", "sampling_rate"]: | |
sampling_rate = getattr(config, sampling_rate_name, None) | |
if sampling_rate is not None: | |
self.sampling_rate = sampling_rate | |
def preprocess(self, text, **kwargs): | |
if isinstance(text, str): | |
text = [text] | |
if self.model.config.model_type == "bark": | |
# bark Tokenizer is called with BarkProcessor which uses those kwargs | |
new_kwargs = { | |
"max_length": self.model.generation_config.semantic_config.get("max_input_semantic_length", 256), | |
"add_special_tokens": False, | |
"return_attention_mask": True, | |
"return_token_type_ids": False, | |
"padding": "max_length", | |
} | |
# priority is given to kwargs | |
new_kwargs.update(kwargs) | |
kwargs = new_kwargs | |
output = self.tokenizer(text, **kwargs, return_tensors="pt") | |
return output | |
def _forward(self, model_inputs, **kwargs): | |
# we expect some kwargs to be additional tensors which need to be on the right device | |
kwargs = self._ensure_tensor_on_device(kwargs, device=self.device) | |
if self.model.can_generate(): | |
output = self.model.generate(**model_inputs, **kwargs) | |
else: | |
output = self.model(**model_inputs, **kwargs)[0] | |
if self.vocoder is not None: | |
# in that case, the output is a spectrogram that needs to be converted into a waveform | |
output = self.vocoder(output) | |
return output | |
def __call__(self, text_inputs: Union[str, List[str]], **forward_params): | |
""" | |
Generates speech/audio from the inputs. See the [`TextToAudioPipeline`] documentation for more information. | |
Args: | |
text_inputs (`str` or `List[str]`): | |
The text(s) to generate. | |
forward_params (*optional*): | |
Parameters passed to the model generation/forward method. | |
Return: | |
A `dict` or a list of `dict`: The dictionaries have two keys: | |
- **audio** (`np.ndarray` of shape `(nb_channels, audio_length)`) -- The generated audio waveform. | |
- **sampling_rate** (`int`) -- The sampling rate of the generated audio waveform. | |
""" | |
return super().__call__(text_inputs, **forward_params) | |
def _sanitize_parameters( | |
self, | |
preprocess_params=None, | |
forward_params=None, | |
): | |
if preprocess_params is None: | |
preprocess_params = {} | |
if forward_params is None: | |
forward_params = {} | |
postprocess_params = {} | |
return preprocess_params, forward_params, postprocess_params | |
def postprocess(self, waveform): | |
output_dict = {} | |
output_dict["audio"] = waveform.cpu().float().numpy() | |
output_dict["sampling_rate"] = self.sampling_rate | |
return output_dict | |